Macrophages phagocytose bacteria. Certain pathogenic bacteria access and replicate within the cytosol of infected macrophages and induce changes in macrophage gene expression by triggering of innate immune receptors and/or the effects of bacterial virulence factors. We used microarray analysis to identify changes in macrophage gene expression following infection with Listeria monocytogenes.
Induction of IFN-alphabeta enables Listeria monocytogenes to suppress macrophage activation by IFN-gamma.
Sex, Specimen part
View SamplesBackground Published multi-gene classifiers suggested outcome prediction for patients with stage UICC II colon cancer based on different gene expression signatures. However, there is currently no translation of these classifiers for application in routine diagnostic. Therefore, we aimed at validating own and published gene expression signatures employing methods which enable RNA and protein detection in routine diagnostic specimens. Results Immunohistochemistry was applied to 68 stage UICC II colon cancers to determine the protein expression of five selected previously published classifier genes (CDH17, LAT, CA2, EMR3, and TNFRSF11A). Correlation of protein expression data with clinical outcome within a 5-year post-surgery course failed to separate patients with a disease-free follow-up [Group DF] and relapse [Group R]). In addition, RNA from macrodissected tumor samples from 53 of these 68 patients was profiled on Affymetrix GeneChips (HG-U133 Plus 2.0). Prognostic signatures were generated by Nearest Shrunken Centroids with cross-validation. Although gene expression profiling allowed the identification of differentially expressed genes between the groups DF and R, a stable classification and prognosis signature was not discernable in our data. Furthermore, the application of previously published gene signatures consisting of 22 and 19 genes, respectively, to our gene expression data set using global tests and leave-one-out cross-validation was unable to predict clinical outcome (prediction rate 75.5% and 64.2%; n.s.). T-stage was the only independent prognostic factor for relapse in multivariate analysis with established clinical and pathological parameters including microsatellite status. Conclusions Our protein and gene expression analyses currently do not support application of molecular classifiers for prediction of clinical outcome in routine diagnostic as a basis for patient-orientated therapy in stage UICC II colon cancer. Further studies are needed to develop prognosis signatures applicable in patient care.
Molecular profiles and clinical outcome of stage UICC II colon cancer patients.
Sex
View SamplesThe mammalian target of rapamycin complex 2 (mTORC2) contains the essential protein RICTOR and is activated by growth factors. mTORC2 in adipose tissue contributes to regulating glucose and lipid metabolism. In the perivascular adipose tissue (PVAT) mTORC2 ensures normal vascular reactivity by controlling expression of inflammatory molecules. To assess whether RICTOR/mTORC2 contributes to blood pressure regulation, we applied a radiotelemetry approach in control and Rictor knockout (RictoraP2KO) mice generated by using adipocyte protein-2 gene promoter-driven CRE recombinase to delete Rictor. 24 hour mean arterial pressure (MAP) was increased in RictoraP2KO mice, and the physiologic decline in MAP during the dark period impaired. In parallel, heart rate and locomotor activity were elevated during the dark period with a pattern similar to blood pressure changes. This phenotype was associated with mild cardiomyocyte hypertrophy, decreased cardiac natriuretic peptides (NPs) and NP receptor expression in adipocytes. Moreover, clock gene expression was dampened or phase-shifted in PVAT. No differences in clock gene expression were observed in the master clock suprachiasmatic nucleus (SCN), though Rictor gene expression was also lower in brain of RictoraP2KO mice. Thus, the present study underscores the importance of RICTOR/mTORC2 for interactions between vasculature, adipocytes and brain to tune physiological outcomes such as blood pressure and locomotion.
Deletion of Rictor in brain and fat alters peripheral clock gene expression and increases blood pressure.
Sex, Specimen part
View SamplesCutaneous T-cell lymphomas form a heterogeneous group of non-Hodgkin lymphomas characterized by only poor prognosis in advanced stage. Despite significant progress made in the identification of novel genes and pathways involved in the pathogenesis of cutaneous lymphoma, the therapeutic value of these findings has still to be proven. Here, we demonstrate by gene expression arrays that aurora kinase A is one of highly overexpressed genes of the serine/threonine kinase in CTCL. The finding was confirmed by qualitative RT-PCR, Western blotting and immunohistochemistry in CTCL cell lines and primary patient samples. Moreover, treatment with a specific aurora kinase A inhibitor blocks cell proliferation by inducing cell cycle arrest in G2 phase as well as apoptosis in CTCL cell lines. These new data provide a promising rationale for using aurora kinase A inhibition as a therapeutic modality of CTCL.
Aurora Kinase A Is Upregulated in Cutaneous T-Cell Lymphoma and Represents a Potential Therapeutic Target.
Specimen part, Subject
View SamplesA key limitation in single cell genomics is generating a high-quality single cell suspension that contains rare or difficult to dissociate cell types and is free of RNA degradation or transcriptional stress responses. Samples with unpredictable availability or that must be collected at several timepoints present additional challenges. Using adult mouse kidney, we compared single-cell RNA sequencing (scRNA-seq) data generated using DropSeq with snRNA-seq data generated from nuclei using sNuc-DropSeq, DroNc-seq and 10X Chromium. We validated snRNA-seq on fibrotic kidney from day 14 unilateral ureteral obstruction (UUO). Overall design: Dropseq, sNucDropseq, DroNcSeq and 10X Chromium were used to profile mouse healthy and fibrotic kidneys
Advantages of Single-Nucleus over Single-Cell RNA Sequencing of Adult Kidney: Rare Cell Types and Novel Cell States Revealed in Fibrosis.
Subject
View SamplesMacrophages are amongst the major targets of glucocorticoids (GC) as therapeutic anti-inflammatory agents. Here we show that GC treatment of mouse and human macrophages initiates a cascade of induced gene expression including many anti-inflammatory genes. Inducible binding of the glucocorticoid receptor (GR) was detected at candidate enhancers in the vicinity of induced genes in both species and this was strongly associated with canonical GR binding motifs. However, the sets of inducible genes, the candidate enhancers, and the GR motifs within them, were highly-divergent between the two species.
Enhancer Turnover Is Associated with a Divergent Transcriptional Response to Glucocorticoid in Mouse and Human Macrophages.
Sex, Age, Specimen part, Treatment, Time
View SamplesMacrophages are amongst the major targets of glucocorticoids (GC) as therapeutic anti-inflammatory agents. Here we show that GC treatment of mouse and human macrophages initiates a cascade of induced gene expression including many anti-inflammatory genes. Inducible binding of the glucocorticoid receptor (GR) was detected at candidate enhancers in the vicinity of induced genes in both species and this was strongly associated with canonical GR binding motifs. However, the sets of inducible genes, the candidate enhancers, and the GR motifs within them, were highly-divergent between the two species.. The data cast further doubt upon the predictive value of mouse models of inflammatory disease.
Enhancer Turnover Is Associated with a Divergent Transcriptional Response to Glucocorticoid in Mouse and Human Macrophages.
Specimen part, Treatment, Time
View SamplesThecal tissue forms a layer around the follicle just prior to antral stage and grows with the follicle (containing an oocyte) as it matures. The innermost component (theca interna) supplies hormones and other factors necessary to the growth and development of the granulosa and oocyte. Most follicles regress and die (become atretic) at the antral stage, and this process as well as development of the follicle are undoubtedly influenced by the theca.
Transcriptome profiling of the theca interna in transition from small to large antral ovarian follicles.
Specimen part
View SamplesBACKGROUND: Hox genes are implicated in hematopoietic stem cell (HSC) regulation as well as in leukemia development through translocation with the nucleoporin gene NUP98. Interestingly, an engineered NUP98-HOXA10 (NA10) fusion can induce a several hundred-fold expansion of HSCs in vitro and NA10 and the AML-associated fusion gene NUP98-HOXD13 (ND13) have a virtually indistinguishable ability to transform myeloid progenitor cells in vitro and to induce leukemia in collaboration with MEIS1 in vivo. METHODOLOGY/PRINCIPAL FINDINGS: These findings provided a potentially powerful approach to identify key pathways mediating Hox-induced expansion and transformation of HSCs by identifying gene expression changes commonly induced by ND13 and NA10 but not by a NUP98-Hox fusion with a non-DNA binding homedomain mutation (N51S). The gene expression repertoire of purified murine bone marrow Sca-1+Lin- cells transduced with retroviral vectors encoding for these genes was established using the Affymetrix GeneChip MOE430A. Approximately seventy genes were differentially expressed in ND13 and NA10 cells that were significantly changed by both compared to the ND13(N51S) mutant. Intriguingly, several of these potential Hox target genes have been implicated in HSC expansion and self-renewal, including the tyrosine kinase receptor Flt3, the prion protein, Prnp, hepatic leukemia factor, Hlf and Jagged-2, Jag2. CONCLUSIONS: In conclusion this study has identified several novel Hox downstream target genes and provides important new leads to key regulators of the expansion and transformation of hematopoietic stem cells by Hox.
Candidate genes for expansion and transformation of hematopoietic stem cells by NUP98-HOX fusion genes.
No sample metadata fields
View SamplesGeminin is a small nucleoprotein that neuralizes ectoderm in the Xenopus embryo. Geminin promotes neural fate acquisition of mouse embryonic stem cells: Geminin knockdown during neural fate acquisition decreased expression of neural precursor cell markers (Pax6, Sox1), while increasing expression of Pitx2, Lefty1 and Cited2, genes involved in formation of the mouse node. Here we differentiated mouse embryonic stem cells into embryoid bodies to study Geminin's ability to repress primitive streak mesendoderm fate acquisition. We used microarrays to define the sets of genes that are regulated by Geminin during cell fate acquisition in embryoid bodies, using Dox-inducible Geminin knockdown or overexpression mouse embryonic stem cell lines.
Geminin restrains mesendodermal fate acquisition of embryonic stem cells and is associated with antagonism of Wnt signaling and enhanced polycomb-mediated repression.
Specimen part
View Samples