Time series of eleven breast cancer samples subjected to different cold ischemic stress of up to 3 hr post tumor excision.
Effects of tissue handling on RNA integrity and microarray measurements from resected breast cancers.
Subject
View SamplesOur aim is to identify circadian transcripts that are co-regulated with [Ca2+]cyt, with the eventual goal of identifying genetic regulators and targets for circadian oscillations of [Ca2+]cyt. We have identified two conditions in which [Ca2+]cyt behaves differently to other circadian outputs. 1. Treatment of plants with nicotinamide, a metabolic inhibitor of ADPR cyclase, abolishes the circadian oscillations of [Ca 2+]cyt. However, leaf movement, CCA1, LHY, TOC1 and CAB transcript abundance and CAB promoter activity are all rhythmic albeit with a longer period (Dodd et al., 2007). 2. The toc1-1 mutant, which shortens the circadian period of all other rhythms tested, has no effect on the period of [Ca2+]cyt oscillations (Xu et al., 2007). We will measure the circadian regulation of transcript abundance in wild type (C24), toc1-1 and nicotinamide (C24)-treated plants.
Correct biological timing in Arabidopsis requires multiple light-signaling pathways.
Specimen part, Treatment, Time
View SamplesGlobal restriction of protein synthesis is a hallmark of cellular stress. Using hydrogen peroxide, we monitor the transcript level and also the translation status for each RNA using cycloheximide to freeze elongating ribosomes. Polyribosome fractionation of cell extracts was used to separate highly translated and poorly translated mRNAs that were then separately analysed.
Global translational responses to oxidative stress impact upon multiple levels of protein synthesis.
Sex, Compound
View SamplesAlthough it is well established that the ovarian reserve diminishes with increasing age, and that a womans age is correlated to lower oocyte quality, the interplay of a diminished reserve and age on oocyte developmental competence is not clear. After maturation, oocytes are mostly transcriptionally quiescent, and developmental competence prior to embryonic genome activation (EGA) relies on maternal RNA and proteins. Age and ovarian reserve both affects oocyte developmental competence, however, their relative importance in this process are difficult to tease out, as ageing is accompanied by a decrease in ovarian reserve. Oocytes store large quantities of RNA, including several noncoding transcripts (ncRNAs) involved in early development transcription and translation modulation. Despite the central role of ncRNAs in maternal to zygote transition, no characterization of the ncRNA transcriptome in human oocytes has been reported. This study aims at identifying how the human oocyte transcriptome changes across reproductive ages and ovarian reserve levels, with the goal of identifying candidate markers of developmental competence, and to assess the independent relevance of age and ovarian reserve in the changes of the transcriptome
The transcriptome of human oocytes is related to age and ovarian reserve.
No sample metadata fields
View Samplesgene expression profiles of leukocytes from blood (WBCs) and spleen harvested at an early (two hours) time point after injury or sham injury in mice subjected to trauma-hemorrhage, burn injury or lipopolysaccharide (LPS)-infusion at three experimental sites
Commonality and differences in leukocyte gene expression patterns among three models of inflammation and injury.
No sample metadata fields
View SamplesOne common form of translational control is mediated by proteins that bind to the mRNA 5' cap-binding protein eIF4E. These proteins are collectively called 4E binding proteins (4EBPs). Saccharomyces cerevisiae possesses two 4EBPs that are encoded by non-essential genes called CAF20 and EAP1. To determine the impact of gene deletion on gene expression, we monitored the transcript level and also the translation status for each RNA using cycloheximide to freeze elongating ribosomes in wild-type, caf20 and eap1 cells. Polyribosome fractionation of cell extracts was used to separate highly translated and poorly translated mRNAs that were then separately analyzed.
Identifying eIF4E-binding protein translationally-controlled transcripts reveals links to mRNAs bound by specific PUF proteins.
Sex
View SamplesWe generated a human EFTUD2 knockdown cell line using a CRISPR cas9 nickase strategy to investigate the effects of decreased expression of core spliceosome components on cell characteristics and global transcriptome expression/splicing patterns Overall design: 6 biological replicates of WT or CRISPR knock-down cells were generated and analysed by RNA-Seq
Disease modeling of core pre-mRNA splicing factor haploinsufficiency.
Cell line, Subject
View SamplesThe effect of benzene exposure on peripheral blood mononuclear cell (PBMC) gene expression was examined in a population of shoe-factory workers with well-characterized occupational exposures to benzene.
Changes in the peripheral blood transcriptome associated with occupational benzene exposure identified by cross-comparison on two microarray platforms.
No sample metadata fields
View SamplesHuman toxicogenomic studies to date have been of limited size, have mainly addressed exposures at the upper end of typical ranges of human exposure, and have often lacked precise, individual estimates of exposure. Previously, we identified genes associated with exposure to high (>10 ppm) levels of the leukemogen, benzene, through transcriptomic analyses of blood cells from small numbers of occupationally exposed workers. Here, we have expanded the study to 125 workers exposed to a wide range of benzene levels, including <1 ppm. Study design, and analysis with a mixed effects model, removed sources of biological and experimental variability and revealed highly significant widespread perturbation of gene expression at all exposure levels. Benzene is an established cause of acute myeloid leukemia (AML), and may cause one or more lymphoid malignancies in humans. Interestingly, acute myeloid leukemia was among the most significant pathways impacted by benzene exposure in the present study. Further, at most exposure levels, immune response pathways including T cell receptor signaling, B cell receptor signaling, and Toll like receptor signaling were impacted, providing support for the biological plausibility of an association between lymphoma and benzene exposure. We also identified a 16-gene expression signature modified by all levels of benzene exposure, comprising genes with roles in immune response, inflammatory response, cell adhesion, cell-matrix adhesion, and blood coagulation. Overall, these findings support, and expand upon, our current understanding of the mechanisms by which benzene may induce hematotoxicity, leukemia and lymphoma. Furthermore, this study shows that with good study design and analysis, transcriptome profiling of the blood of chemically-exposed humans can identify relevant biomarkers across a range of exposures and inform about potential associations with disease risks.
Global gene expression profiling of a population exposed to a range of benzene levels.
Sex, Age, Subject
View SamplesCoordinated regulation of protection mechanisms against environmental abiotic stress and pathogen attack is essential for plant adaptation and survival. Initial abiotic stress can interfere with disease resistance signaling. Conversely, initial plant immune signaling may interrupt subsequent ABA signal transduction. However, the processes involved in cross talk between these signaling networks have not been determined. By screening a 9,600 compound chemical library, we identified a small molecule [5-(3,4-Dichlorophenyl)Furan-2-yl]-Piperidin-1-ylMethanethione that rapidly down-regulates ABA-dependent gene expression and also inhibits ABA-induced stomatal closure. Transcriptome analyses show that DFPM also stimulates expression of plant defense-related genes. Plate grown 12-day-old seedlings were transferred into 6 well plates with 1:5000 (V/V) DMSO in water as a control, 30uM DFPM, and 10uM ABA in water as a treatment for 6 hours. DFPM was added 30 min prior to ABA treatment. RNA was extracted using Trizol (Invitrogen, Carlsbad, CA, USA) and further purified using RNeasy Plant RNA purification kit (QIAgen, Valencia, CA, USA). Three biological replicates of ATH1 oligonucleotide arrays were hybridized with labeled samples from 1) wild-type Columbia (WT) untreated, 2) WT with 30uM DFPM treatment, 3) WT with 10uM ABA treatment, 4) WT with 30uM DFPM and 10uM ABA treatment. Each biological replicate was prepared by combining 7 independently-treated samples.
Chemical genetics reveals negative regulation of abscisic acid signaling by a plant immune response pathway.
Age
View Samples