The accumulation of irreparable cellular damage restricts healthy lifespan after acute stress or natural aging. Senescent cells are thought to impair tissue function and their genetic clearance can successfully delay features of aging. Identifying how senescent cells avoid apoptosis would allow for the prospective design of anti-senescence compounds to address whether homeostasis can be restored. Here, we identify FOXO4 as a pivot in the maintenance of senescent cell viability. We designed a FOXO4-based peptide which selectively competes for interaction of FOXO4 with p53. In senescent cells, this results in p53 nuclear exclusion and cell-intrinsic apoptosis. Importantly, under conditions where it was well tolerated, the FOXO4 peptide restored liver function after Doxorubicin-induced chemotoxicity. Moreover, in fast aging XpdTTD/TTD, as well as in naturally aged mice the FOXO4 peptide could counteract the loss of fitness, fur density and renal function. Thus, it is possible to therapeutically target senescent cells and thereby effectively counteract senescence-associated loss of tissue homeostasis. Overall design: mRNA expression levels are compared between IR-induced senescent and proliferating IMR90 cells in triplicate
Targeted Apoptosis of Senescent Cells Restores Tissue Homeostasis in Response to Chemotoxicity and Aging.
Specimen part, Cell line, Subject
View SamplesWe used gene expression profiling to address several specific questions that arose in a study of repair of ultraviolet C radiation in C elegans, as well as to generate hypotheses regarding the possible mechanism(s) of decreased DNA repair observed in old adults in that study. This analysis was performed in order to analyze gene expression in the strain (JK1107) and experimental conditions that we used for our DNA repair studies.
Decline of nucleotide excision repair capacity in aging Caenorhabditis elegans.
No sample metadata fields
View SamplesA mucus layer covers and protects the intestinal epithelial cells from direct contact with microbes. This mucus layer not only prevents inflammation but also plays an essential role in microbiota colonization, indicating the complex interplay between mucus composition-microbiota and intestinal health. However, it is unknown whether the mucus layer is influenced by age or sex and whether this contributes to reported differences in intestinal diseases in males and females or with ageing. Therefore, in this study we investigated the effect of age on mucus thickness, intestinal microbiota composition and immune composition in relation to sex. The ageing induced shrinkage of the colonic mucus layer was associated with bacterial penetration and direct contact of bacteria with the epithelium in both sexes. Additionally, several genes involved in the biosynthesis of mucus were downregulated in old mice, especially in males, and this was accompanied by a decrease in abundances of various Lactobacillus species and unclassified Clostridiales type IV and XIV and increase in abundance of the potential pathobiont Bacteroides vulgatus. The changes in mucus and microbiota in old mice were associated with enhanced activation of the immune system as illustrated by a higher percentage of effector T cells in old mice. Our data contribute to a better understanding of the interplay between mucus-microbiota-and immune responses and ultimately may lead to more tailored design of strategies to modulate mucus production in targeted groups.
The effect of age on the intestinal mucus thickness, microbiota composition and immunity in relation to sex in mice.
Sex, Age, Specimen part
View SamplesAims/hypothesis: While lipid deposition in skeletal muscle is considered to be involved in obesity-associated insulin resistance, neutral intramyocellular lipid (IMCL) accumulation per se does not necessarily induce insulin resistance. We previously demonstrated that overexpression of the lipid droplet coat protein perilipin 2 augments intramyocellular lipid content while improving insulin sensitivity. Another member of the perilipin family, perilipin 5 (PLIN5), is predominantly expressed in oxidative tissues like skeletal muscle. Here we investigated the effects of PLIN5 overexpression in comparison with effects of PLIN2 on skeletal muscle lipid levels, gene expression profiles and insulin sensitivity. Methods: Gene electroporation was used to overexpress PLIN5 in tibialis anterior muscle of rats fed a high fat diet. Eight days after electroporation, insulin-mediated glucose uptake in skeletal muscle was measured by means of a hyperinsulinemic euglycemic clamp. Electron microscopy, fluorescence microscopy and lipid extractions were performed to investigate IMCL accumulation. Gene expression profiles were obtained using microarrays. Results: TAG storage and lipid droplet size increased upon PLIN5 overexpression. Despite the higher IMCL content, insulin sensitivity was not impaired and DAG and acylcarnitine levels were unaffected. In contrast to the effects of PLIN2 overexpression, microarray data analysis revealed a gene expression profile favoring FA oxidation and improved mitochondrial function. Conclusions/interpretation: Both PLIN2 and PLIN5 increase neutral IMCL content without impeding insulin-mediated glucose uptake. As opposed to the effects of PLIN2 overexpression, overexpression of PLIN5 in skeletal muscle promoted expression of a cluster of genes under control of PPAR and PGC1 involved in FA catabolism and mitochondrial oxidation.
Overexpression of PLIN5 in skeletal muscle promotes oxidative gene expression and intramyocellular lipid content without compromising insulin sensitivity.
Sex, Age, Specimen part, Treatment
View SamplesTranscript data from livers from fasted-state BXD strains on chow or high fat diet
Multilayered genetic and omics dissection of mitochondrial activity in a mouse reference population.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
SUMOylation-dependent LRH-1/PROX1 interaction promotes atherosclerosis by decreasing hepatic reverse cholesterol transport.
Specimen part
View SamplesBackground: Nrf2 is an essential cytoprotective transcription factor. However, association of Nrf2 in organ development and neonatal disease is rarely examined. Hyperoxia exposure to newborn rodents generates pulmonary phenotypes which resemble bronchopulmonary dysplasia (BPD) of prematurity.
Targeted deletion of nrf2 impairs lung development and oxidant injury in neonatal mice.
Treatment
View SamplesTranscript data from LRH-1 WT and LRH-1 K289R jejunums from mice fed ad libitum and sacrificed at 7 am
SUMOylation-dependent LRH-1/PROX1 interaction promotes atherosclerosis by decreasing hepatic reverse cholesterol transport.
Specimen part
View SamplesSevere malnutrition in young children is associated with signs of hepatic dysfunction such as steatosis and hypoalbuminemia, but its etiology is unknown. To investigate the underlying mechanisms of hepatic dysfunction we used a rat model of malnutrition by placing weanling rats on a low protein or control diet (5% or 20% of calories from protein, respectively) for four weeks. Low protein diet-fed rats developed hypoalbuminemia and severe hepatic steatosis, consistent with the human phenotype. Hepatic peroxisome content was decreased and metabolomic analysis indicated impaired peroxisomal function. Loss of peroxisomes was followed by accumulation of dysfunctional mitochondria and decreased hepatic ATP levels. Fenofibrate supplementation restored hepatic peroxisome abundance and increased mitochondrial fatty acid -oxidation capacity, resulting in reduced steatosis and normalization of ATP and plasma albumin levels. These findings provide important insight into the metabolic
Malnutrition-associated liver steatosis and ATP depletion is caused by peroxisomal and mitochondrial dysfunction.
Sex, Specimen part, Treatment
View SamplesLittle is known about the early transcriptional events in innate immune signaling in immature and tolerogenic monocyte-derived dendritic cells (DCs), the professional antigen-presenting cells of our immune system. TLR ligands usually induce a proinflammatory transcriptional response, whereas IL10 and/or dexamethasone induce a more tolerogenic phenotype.
MicroRNA genes preferentially expressed in dendritic cells contain sites for conserved transcription factor binding motifs in their promoters.
Specimen part
View Samples