Neurofibromatosis Type 1 (NF1) patients develop benign neurofibromas and malignant peripheral nerve sheath tumors (MPNST). These incurable peripheral nerve tumors result from loss of NF1 tumor suppressor gene function, causing hyperactive Ras signaling. Activated Ras controls numerous downstream effectors, but specific pathways mediating effects of hyperactive Ras in NF1 tumors are unknown. Cross-species transcriptome analyses of mouse and human neurofibromas and MPNSTs identified global negative feedback of genes that regulate Ras-Raf- MEK- extracellular signal-regulated protein kinase (ERK) signaling in both species. Nonetheless, activation of ERK was sustained in mouse and human neurofibromas and MPNST. PD0325901, a highly selective pharmacological inhibitor of MEK, was used to test whether sustained Ras-Raf-MEK-ERK signaling contributes to neurofibroma growth in the Nf1fl/fl;Dhh-cre mouse model or in NF1 patient MPNST cell xenografts. PD0325901 treatment reduced aberrantly proliferating cells in neurofibroma and MPNST, prolonged survival of mice implanted with human MPNST cells, and shrank neurofibromas in >80% of mice tested. PD0325901 also caused effects on tumor vasculature. Our data demonstrate that deregulated Ras/ERK signaling is critical for the growth of NF1 peripheral nerve tumors and provide strong rationale for testing MEK inhibitors in NF1 clinical trials.
MEK inhibition exhibits efficacy in human and mouse neurofibromatosis tumors.
Specimen part
View SamplesLayer II stellate neurons (entorhinal cortex) and layer III cortical neurons (hippocampus CA1, middle temporal gyrus, posterior cingulate, superior frontal gyrus, primary visual cortex) were gene expression profiled. Brain regions are from non-demented individuals with intermediate Alzheimer's disease neuropathologies
Multiscale Analysis of Independent Alzheimer's Cohorts Finds Disruption of Molecular, Genetic, and Clinical Networks by Human Herpesvirus.
No sample metadata fields
View SamplesWe have determined the whole genome sequence of an individual at high accuracy and performed an integrated analysis of omics profiles over a 1.5 year period that included healthy and two virally infected states. Omics profiling of transcriptomes, proteomes, cytokines, metabolomes and autoantibodyomes from blood components have revealed extensive, dynamic and broad changes in diverse molecular components and biological pathways that occurred during healthy and disease states. Many changes were associated with allele- and edit-specific expression at the RNA and protein levels, which may contribute to personalized responses. Importantly, genomic information was also used to predict medical risks, including Type II Diabetes (T2D), whose onset was observed during the course of our study using standard clinical tests and molecular profiles, and whose disease progression was monitored and subsequently partially managed. Our study demonstrates that longitudinal personal omics profiling can relate genomic information to global functional omics activity for physiological and medical interpretation of healthy and disease states. Overall design: Examination of blood component in 20 different time points over 1.5 years which includes 2 disease state and 18 healty state Related exome studies at: SRX083314 SRX083313 SRX083312 SRX083311
Personal omics profiling reveals dynamic molecular and medical phenotypes.
Specimen part, Disease, Subject
View SamplesTo follow-up findings that miR-9 was abundantly expressed in control NPCs, significantly down-regulated in a subset of SZ NPCs, and that miR-9 levels/activity, neural migration and diagnosis were strongly correlated, we tested the effect of manipulating miR-9 at cellular, proteomic and transcriptomic levels. Unexpectedly, proteomic- and RNAseq-based analysis revealed that these effects were mediated primarily by small changes in expression of indirect miR-9 targets, rather than large changes in direct miR-9 targets; these indirect targets are enriched for migration-associated genes. Together these data indicate that aberrant levels and activity of miR-9 may be one of the many factors that contribute to SZ risk, at least in a subset of patients. Methods: We compared global transcription of forebrain NPCs from two control and two SZ patients with manipulated miR-9 levels by RNAseq. Results: Although RNAseq analysis revealed large inter-individual heterogeneity, we were able to resolve several functional consistencies in the effects of our miR-9 perturbations: i) the change in miR-9 activity was consistent with the inhibitory role of miR-9, ii) the gene expression fold-change of miR-9 target genes (between each perturbation and its corresponding control, summarized by the first principal component) was correlated (r=0.95, p=3.92e-04) with miR-9 fold change and iii) the differentially expressed (DE; p <0.01) gene list resulting from miR-9 perturbation (paired t-test) was enriched for miR-9 targets (1.53-fold, p=1.2e-5). Conclusions: We integrated the miR-9 perturbation RNAseq data with our existing RNAseq datasets contrasting control and SZ hiPSC NPC expression from our cohort 1 (six controls, four patients), to ask whether there was any relationship between the “SZ NPC signature” and “miR-9 perturbation” datasets; we observed that the DE (p-value <0.01) in “SZ NPC signature” is enriched for DE (fdr<0.01) in “miR-9 perturbation” (the overall enrichment is 2.31-fold (p=9.39e-09)); there is significant correlation between DE fold-change in these two datasets (overall genes r=0.188; p<10e-50). Effects were mediated primarily by small changes in expression of indirect miR-9 targets, rather than large changes in direct miR-9 targets; these indirect targets are enriched for migration-associated genes Overall design: Biological duplicates of passage-matched NPCs from 1 control (female) and 1 SZ patient (female) were transduced with either RV-GFP or RV-miR-9-GFP; GFP-positive NPCs were purified by fluorescent activated cell sorting (FACS) and expanded for two passages. In parallel, passage-matched NPCs from 2 controls (1 male, 1 female) and 2 SZ patients (1 male, 1 female) were transiently transfected with either scrambled or miR-9 LNA probes. In both instances, miR-9 perturbation was confirmed by qPCR.
Dysregulation of miRNA-9 in a Subset of Schizophrenia Patient-Derived Neural Progenitor Cells.
Sex, Specimen part, Disease, Subject
View SamplesCell-based models of many neurological and psychiatric diseases, established by reprogramming patient somatic cells into human induced pluripotent stem cells (hiPSCs), have now been reported. While numerous reports have demonstrated that neuronal cells differentiated from hiPSCs are electrophysiologically active mature neurons, the “age” of these cells relative to cells in the human brain remains unresolved. Comparisons of gene expression profiles of hiPSC-derived neural progenitor cells (NPCs) and neurons to the Allen BrainSpan Atlas indicate that hiPSC neural cells most resemble first trimester neural tissue. Consequently, we posit that hiPSC-derived neural cells may most accurately be used to model the early developmental defects that contribute to disease predisposition rather than the late features of the disease. Though the characteristic symptoms of schizophrenia SZ generally appear late in adolescence, it is now thought to be a neurodevelopmental condition, often predated by a prodromal period that can appear in early childhood. Postmortem studies of SZ brain tissue typically describe defects in mature neurons, such as reduced neuronal size and spine density in the prefrontal cortex and hippocampus, but abnormalities of neuronal organization, particularly in the cortex, have also been reported. We postulated that defects in cortical organization in SZ might result from abnormal migration of neural cells. To test this hypothesis, we directly reprogrammed fibroblasts from SZ patients into hiPSCs and subsequently differentiated these disorder-specific hiPSCs into NPCs. SZ hiPSC differentiated into forebrain NPCs have altered expression of a number of cellular adhesion genes and WNT signaling. Methods: We compared global transcription of forebrain NPCs from six control and four SZ patients by RNAseq. Results: Multi-dimensional scaling (MDS) resolved most SZ and control hiPSC NPC samples; 848 genes were significantly differentially expressed (FDR<0.01) Conclusions: The WNT signaling pathway was enriched 2-fold (fisher exact test p-value = 0.031). Overall design: 1-2 independent differentiations (biological replicates) for each of four control and four schizophrenia patients were analyzed; samples were generated in parallel to neuron RNAseq data.
Dysregulation of miRNA-9 in a Subset of Schizophrenia Patient-Derived Neural Progenitor Cells.
No sample metadata fields
View SampleshTERT/cdk4 immortalized myogenic human cell lines represent an important tool for skeletal muscle research, being used as therapeutically-pertinent models of various neuromuscular disorders and in numerous fundamental studies of muscle cell function. However, the cell cycle is linked to other cellular processes such as integrin regulation, the PI3K/Akt pathway, and microtubule stability, raising the question as to whether transgenic modification of the cell cycle results in secondary effects that could undermine the validity of these cell models. Here we subjected healthy and disease lines to intensive transcriptomic analysis, comparing immortalized lines with their parent primary populations in both differentiated and undifferentiated states, and testing their myogenic character by comparison with non-myogenic (CD56-negative) cells. We found that immortalization has no measurable effect on the myogenic cascade or on any other cellular processes, and that it was protective against the systems level effects of senescence that are observed at higher division counts of primary cells.
Skeletal muscle characteristics are preserved in hTERT/cdk4 human myogenic cell lines.
Specimen part, Disease, Disease stage
View SamplesThe experiment aimed at determing the influence of mast cell deficiency on the transcriptome of skin-infiltrating leukocytes in K14HPV16 mice at 2month and 6month of age. Overall design: Skin-inflitrating leucocytes were FACS-purified from mast cell proficient (Mcpt5-Cre-) and mast cell deficient (Mcpt5-Cre+) K14HPV16 mice. Mast cells (CD117 high, FCeR1 high) were excluded from the sorting gate. In order to control for minimal mast cell contamination during sorting from K14HPV16 Mcpt5-Cre- skin, mast cell signature transcripts were identified by comparing transcriptomes of samples fromK14HPV16 Mcpt5-Cre- mice in which mast cells were flow cytometrically included vs excluded.
Although Abundant in Tumor Tissue, Mast Cells Have No Effect on Immunological Micro-milieu or Growth of HPV-Induced or Transplanted Tumors.
Age, Specimen part, Subject
View SamplesRNA seq was used to compare the expression profile of macrophages in presence and absense of mast cells. MB49 cells were injected i.d. into Mcpt5-Cre+ R26DTA animals and cre-negative littermates. Macrophages were sorted at 20 d.p.i. Overall design: Macrophage RNA profiles of MB49 TAMs (tumor-associated macrophages), harvested at 20 d.p.i. in MC-Proficient and MC-deficient animals
Although Abundant in Tumor Tissue, Mast Cells Have No Effect on Immunological Micro-milieu or Growth of HPV-Induced or Transplanted Tumors.
Specimen part, Subject
View SamplesPurpose:To dissect the mechanisms underlying altered gene expression in aneuploids, we measured transcript abundance in colonies of haploid yeast strain F45 and derived strains, including strains disomic for chromosomes XV and XVI, using RNA-seq. F45 colonies display complex “fluffy” morphologies, while the disomic colonies are smooth, resembling laboratory strains Methods: RNA-seq analysis was carried out on RNA isolated from fully developed S. cerevisiae colonies, grown on solid medium for four days, either in triplicate or quadruplicate. Stranded, paired-end sequencing was carried out in two batches. In the first batch 2x51 bp sequencing was carried out on an Illumina Hiseq2000 and in the second batch 2x75 bp sequencing was carried out on an Illumina NextSeq. Readpairs were aligned using Bowtie2 (version 2.1.0)with the parameters [-N 1 -I 50 -X 450 -p 6 --reorder -x -S] and allowing 1 mismatch per read. Differential transcription was detected and quantified using EdgeR (v. 3.6.8) Results: Our two disomes displayed similar transcriptional profiles, a phenomenon not driven by their shared smooth colony morphology nor specified purely by the karyotype. Surprisingly, the environmental stress response (ESR) was induced in euploid F45, relative to the two disomes, rather than vice-versa. We also identified genes whose expression reflected a non-linear interaction between the copy number of a transcriptional regulatory gene on chromosome XVI, DIG1, and the copy number of other chromosome XVI genes. DIG1 and the remaining chromosome XVI genes also demonstrated distinct contributions to the effect of the chromosome XVI disome on ESR gene expression. Conclusions: Expression changes in aneuploids reflect a mixture of effects shared between different aneuploidies, including stress responses, and effects unique to perturbing the copy number of particular chromosomes, including non-linear copy number interactions between genes. The balance between these two phenomena is likely to be genotype and environment specific. Overall design: mRNA profiles of 4 day old haploid F45 colonies, and colonies derived from F45 were generated by deep sequencing, in triplicate or quadruplicate, using Illumina Hiseq2000 or Illumina Nextseq sequencing.
Transcriptional Profiling of Biofilm Regulators Identified by an Overexpression Screen in <i>Saccharomyces cerevisiae</i>.
Cell line, Subject
View SamplesTrimethylated histone H3-lysine 4 is primarily distributed in the form of sharp peaks, extending in neuronal chromatin on average only across 500-1500 base pairs mostly in close proximity to annotated transcription start sites. To explore whether H3K4me3 peaks could also extend across much broader domains, we undertook a detailed analysis of broadest domain cell-type specific H3K4me3 peaks in ChIP-seq datasets from sorted neuronal and non-neuronal nuclei in human, non-human primate and mouse prefrontal cortex (PFC), and blood for comparison. Overall design: We collected separately cortical gray (GM) and subcortical white matter (WM) from 6 adult human subjects without neurological disease and extracted total RNA processed by the RNA-Seq approach.
Deciphering H3K4me3 broad domains associated with gene-regulatory networks and conserved epigenomic landscapes in the human brain.
No sample metadata fields
View Samples