The capacity of cancer cells to undergo epithelial mesenchymal trans-differentiation has been implicated as a factor driving metastasis, through the acquisition of enhanced migratory/invasive cell programs and the engagement of anti-apoptotic mechanisms promoting drug and radiation resistance. Our aim was to define molecular signaling changes associated with mesenchymal trans-differentiation in two KRas mutant NSCLC models. We focused on central transcription and epigenetic regulators predicted to be important for mesenchymal cell survival. Overall design: Haley, J.A., Haughney, E., Ullman, E., Bean, J., Haley, J.D.* and Fink, M.Y. (2014) 'Altered Transcriptional Control Networks with Trans-Differentiation of Isogenic Mutant KRas NSCLC Models' Front. Oncology, doi/10.3389/fonc.2014.00344.
Altered Transcriptional Control Networks with Trans-Differentiation of Isogenic Mutant-KRas NSCLC Models.
Treatment, Subject
View SamplesWe examine the potential of Kras as a metabolic target in lung cancer using the KrasLSL-G12D lung cancer model. We demonstrate that mutant Kras drives a lipogenic gene expression program, and that fatty acid synthesis is important in Kras-induced tumorigenesis.
De novo lipogenesis represents a therapeutic target in mutant Kras non-small cell lung cancer.
Specimen part
View SamplesBeef cow adipose tissue transcriptome
Differential transcript abundance in adipose tissue of mature beef cows during feed restriction and realimentation.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Functional screening implicates miR-371-3p and peroxiredoxin 6 in reversible tolerance to cancer drugs.
Specimen part, Cell line, Treatment
View SamplesAcquired resistance to cancer drug therapies almost always occurs in advanced-stage patients even following a significant response to treatment. In addition to mutational mechanisms, various non-mutational resistance mechanisms have now been recognized. We previously described a chromatin-mediated subpopulation of reversibly drug-tolerant persisters (DTPs) that is dynamically maintained within a wide variety of tumor cell populations. Here, we explored a potential role for microRNAs in such transient drug tolerance. Functional screening of 879 human microRNAs revealed miR-371-3p as a potent suppressor of drug tolerance. PRDX6 (peroxiredoxin 6) was identified as a key target of miR-371-3p in establishing drug tolerance by regulating PLA2/PKC activity and reactive oxygen species. PRDX6 expression is associated with poor prognosis in cancers of multiple tissue origins. These findings implicate miR-371-3p as a suppressor of PRDX6 and suggest that co-targeting of PRDX6 or modulating miR-371-3p expression together with targeted cancer therapies may delay or prevent acquired drug resistance.
Functional screening implicates miR-371-3p and peroxiredoxin 6 in reversible tolerance to cancer drugs.
Cell line, Treatment
View SamplesAcquired resistance to cancer drug therapies almost always occurs in advanced-stage patients even following a significant response to treatment. In addition to mutational mechanisms, various non-mutational resistance mechanisms have now been recognized. We previously described a chromatin-mediated subpopulation of reversibly drug-tolerant persisters (DTPs) that is dynamically maintained within a wide variety of tumor cell populations. Here, we explored a potential role for microRNAs in such transient drug tolerance. Functional screening of 879 human microRNAs revealed miR-371-3p as a potent suppressor of drug tolerance. PRDX6 (peroxiredoxin 6) was identified as a key target of miR-371-3p in establishing drug tolerance by regulating PLA2/PKC activity and reactive oxygen species. PRDX6 expression is associated with poor prognosis in cancers of multiple tissue origins. These findings implicate miR-371-3p as a suppressor of PRDX6 and suggest that co-targeting of PRDX6 or modulating miR-371-3p expression together with targeted cancer therapies may delay or prevent acquired drug resistance.
Functional screening implicates miR-371-3p and peroxiredoxin 6 in reversible tolerance to cancer drugs.
Specimen part, Cell line, Treatment
View SamplesPurpose: Guided by an in silico combination of microRNA (miRNA) target prediction, analysis of transcriptomic changes in 137 human diseases, and advanced gene network modeling, we predicted the miR-130/301 family of miRNAs as a shared regulator of a fibrotic gene network across human diseases, thus orchestrating broad control over disease manifestation. The goals of this study are to compare the lung mRNA profile of mouse model of Pulmonary hypertension, one of the most fibrotic pathology uncovered by our in silico prediction, treated with an inhibitor of miR-130/301 (Short-130) to mice treated with a control inhibitor (Short-NC). Methods: Eight-week-old mice (C57BL/6) were injected with SU5416 (20 mg/kg/dose; Sigma-Aldrich), followed by exposure to normobaric hypoxia (10% O2; OxyCycler chamber, Biospherix Ltd.) for 2 weeks. After 2 weeks and confirmation of PH development in 5 mice (right heart catheterization), mice were further treated with 3 intrapharyngeal injections (every 4 days) of control or miR-130/301 shortmer oligonucleotides, designed as fully modified antisense oligonucleotides complementary to the seed sequence of the miR-130/301 miRNA family (10 mg/kg/dose; Regulus). Specifically, the control and miR-130/301 shortmer oligonucleotides were nontoxic, lipid-permeable, high-affinity oligonucleotides. The miR-130/301 shortmer carried a sequence complementary to the active site of the miR-130/301 miRNA family, containing a phosphorothioate backbone and modifications (fluoro-, methoxyethyl, and bicyclic sugar) at the sugar 2' position. Three days after the last injection, right heart catheterization was performed followed by harvesting of lung tissue for RNA extraction. Lung mRNA profiles of those mice or control mice (Normoxia+SU5416) were generated by deep sequencing, in triplicate, using Illumina HiSeq 2000. The sequence reads that passed quality filters were analyzed at the gene-level count. The gene level counts were then normalized with the R/Bioconductor package limma using the voom /variance stabilization method. The data were quality controlled for outliers using principal component analysis (PCA). Differential expression analysis between transcriptome profiles of experimental groups was performed using the R / Bioconductor package limma. Results: Transcriptomic analyses of whole lung from mice with hypoxia+SU5416-induced PH revealed a generalized de-repression of miR-130/301 targets by Short-130 treatment. Importantly, although whole lung transcriptomics likely captured only a subset of the miR-130/301 targets affecting the diseased pulmonary vasculature, pathway enrichment nonetheless revealed pronounced representation of several pathways known to be involved in fibrosis. Thus, the miR-130/301 family indeed induces a programmatic shift at the molecular level toward the fibrotic pathophenotype in vivo Overall design: Whole lung mRNA profiles of Normoxia (Control) and hypoxia+SU5416-induced PH mice treated with Short-NC or Short-130 were generated by deep sequencing, in triplicate, using Illumina HiSeq 2000.
Matrix Remodeling Promotes Pulmonary Hypertension through Feedback Mechanoactivation of the YAP/TAZ-miR-130/301 Circuit.
No sample metadata fields
View SamplesManagement of severe asthma remains a challenge despite treatment with glucocorticosteroid therapy. The majority of studies investigating disease mechanisms in treatment-resistant severe asthma have previously focused on the large central airways, with very few utilizing transcriptomic approaches. The small peripheral airways, which comprise the majority of the airway surface area, remain an unexplored area in severe asthma and were targeted for global epithelial gene expression profiling in this study.
Altered Epithelial Gene Expression in Peripheral Airways of Severe Asthma.
Sex, Age, Specimen part, Disease, Subject
View SamplesSteer small intestine transcriptome
Differential gene expression in the duodenum, jejunum and ileum among crossbred beef steers with divergent gain and feed intake phenotypes.
Specimen part
View SamplesRNAseq is performed (50bp single end reads) on SW480, HT-29, HCT-15, HCT-116, COLO 205, and COLO 320 cell lines after DMSO or JQ1 treatment Overall design: Examination of transcriptomic changes after JQ1 treatment
CCAT1 is an enhancer-templated RNA that predicts BET sensitivity in colorectal cancer.
No sample metadata fields
View Samples