LMP2A of Epstein-Barr virus is a receptor that mimics an activated B cell receptor, BCR. K1 and K15, related receptors of Kaposi sarcoma-associated herpes virus, KSHV, are expressed in virus-associated tumors but their functions are less obvious. We addressed this uncertainty with mutant EBVs encoding the KSHV genes K1 or K15 in lieu of LMP2A and infected primary human B cells with them. K1 and K15 encoded proteins appear to have noncomplementing redundant functions in this model but our findings suggest that both KSHV proteins can replace LMP2As key activities contributing to the survival, activation and proliferation of B cells.
K1 and K15 of Kaposi's Sarcoma-Associated Herpesvirus Are Partial Functional Homologues of Latent Membrane Protein 2A of Epstein-Barr Virus.
Specimen part, Subject
View SamplesThe mammary gland develops mainly postnatally, when during pregnancy the epithelium grows out into the mammary fat pad and forms a network of epithelial ducts. During pregnancy, these ducts branch and bud to form alveoli. These alveoli produce the milk during lactation. After 7 days of lactation, involution was induced by force weaning the pups. The newly formed epithelium undergoes apoptosis and is removed from the tissue by neighbouring epithelial cells. Tissue remodelling leads to a morphology resembling a gland of a pre-pregnant mouse. Microarray analysis was used to measure mRNA expression of genes during puberty, pregnancy, lactation and involution in a Balb/c mouse strain.
Involution of the mouse mammary gland is associated with an immune cascade and an acute-phase response, involving LBP, CD14 and STAT3.
No sample metadata fields
View SamplesInflorescence stages 1 to 12 from mutants involved in Arabidopsis small RNA metabolism. Three biological replicates of each mutant comprising at least 9 independent plants were harvested, and the expression profiles were determined using Affymetrix ATH1 arrays. Comparisons among the sample groups allow the identification of genes regulated by small RNAs (microRNAs and siRNAs).
microRNA-directed phasing during trans-acting siRNA biogenesis in plants.
No sample metadata fields
View SamplesEstrogen signaling and epigenetic modifications, in particular DNA methylation, are involved in regulation of gene expression in breast cancers. Here we investigated a potential regulatory cross-talk between these two pathways by identifying their common target genes and exploring potential underlying molecular mechanisms in human MCF7 breast cancer cells. Principal Findings: Gene expression profiling revealed that the expression of approximately 150 genes was influenced by both 17-estradiol (E2) and a hypomethylating agent 5-aza-2-deoxycytidine (DAC). Based on gene ontology (GO), CpG island prediction analysis and previously reported estrogen receptor (ER) binding regions, we selected six genes for further analysis (BTG3, FHL2, PMAIP1, BTG2, CDKN1A and TGFB2). GO analysis suggests that these genes are involved in intracellular signaling cascades, regulation of cell proliferation and apoptosis, while CpG island prediction of promoter regions reveals that the promoters of these genes contain at least one CpG island. Using chromatin immunoprecipitation, we show that ER is recruited to CpG islands in promoters, but neither in an E2- nor in a DAC-dependent fashion. DAC treatment reactivates the expression of all selected genes although only the promoters of BTG3 and FHL2 genes are methylated, with E2 treatment showing no effect on the methylation status of these promoters. Conclusions: We identified a set of genes regulated by both estrogen signaling and DNA methylation. However, our data does not support a direct molecular interplay of mediators of estrogen and epigenetic signaling at promoters of regulated genes.
Global identification of genes regulated by estrogen signaling and demethylation in MCF-7 breast cancer cells.
Cell line
View SamplesAcute quadriplegic myopathy (AQM) or critical illness myopathy (CIM) is frequently observed in intensive care unit (ICU) patients. In order to elucidate duration-dependent effects of the ICU intervention on molecular and functional networks that control the muscle wasting and weakness in AQM, gene expression profile was analyzed at time points varying from 6 hours to 14 days in a unique experimental rat model mimicking ICU conditions, i.e., post-synaptically paralyzed, mechanically ventilated and extensively monitored animals.
Muscle wasting and the temporal gene expression pattern in a novel rat intensive care unit model.
Sex, Specimen part, Disease, Disease stage
View Samples10 male subjects performed ~45 min one-legged cycling and 4 x 7 maximal concentric-eccentric knee extensions for each leg 15 min later. Thus, one limb performed aerobic and resistance exercise (AE+RE), while the opposing leg did resistance exercise only (RE). Biopsies were obtained from m. vastus lateralis of each leg 3 h after the resistance exercise bout.
Aerobic exercise augments muscle transcriptome profile of resistance exercise.
Sex, Specimen part, Treatment, Subject
View SamplesMitotic entry is accompanyed by the expression of a cluster of so called mitotic genes, whose activation is critical for mitosis in human and yeast cells. We found a link between the transcription machinery and cell cycle control network at mitosis in fission yeast, involving the Cdk8 kinase dependent phosphorylation of the fork head transcription factor Fkh2. We have generated a non-phosphorylatable fkh2 mutant (fkh2-S2A) also.
Cyclin-dependent kinase 8 regulates mitotic commitment in fission yeast.
No sample metadata fields
View SamplesDespite their importance, plant MAP kinase targets are still poorly elucidated. Here, the specific in vivo interaction of an ethylene response factor (ERF104) with the Arabidopsis MAP kinase, MPK6, is shown by fluorescence resonance energy transfer. The interaction, which is lost within minutes after treatment with the flagellin-derived flg22 peptide, is dependent on both MPK6 kinase activity and rapid ethylene signaling initiated downstream of MPK6 activation. ERF104 is an MPK6 substrate and phosphorylation site mutations affected its stability. ERF104 activates promoters with GCC elements. This was evident from microarray data of overexpressing transgenic plants, where promoters of up regulated genes contain GCC motifs and chromatin immunoprecipitation showing ERF104 association with PDF1.2 promoter. The ERF104 overexpressor did not affect biotrophic bacteria proliferation but was more susceptible to necrotrophic Botrytis cinerea. Microarray performed with erf104 or mpk6 revealed only a limited number of flg22-induced genes that require these elements - possibly as a
Flg22 regulates the release of an ethylene response factor substrate from MAP kinase 6 in Arabidopsis thaliana via ethylene signaling.
No sample metadata fields
View SamplesA key event in the pathogenic process of prion diseases is the conversion of the cellular prion protein (PrPC) to an abnormal and protease-resistant isoform (PrPSc). Mice lacking PrP are resistant to prion infection, and down-regulation of PrPC during prion infection prevents neuronal loss and the progression to clinical disease. These results are suggestive of the potential beneficial effect of silencing PrPC during prion diseases. However, the silencing of a protein that is widely expressed throughout the CNS could be detrimental to brain homeostasis. The physiological role of PrPC remains still unclear, but several putative functions have been proposed. Among these, several lines of evidence support PrPC function in neuronal development and maintenance.
Developmental influence of the cellular prion protein on the gene expression profile in mouse hippocampus.
Specimen part
View SamplesBackground:
Natural variants of AtHKT1 enhance Na+ accumulation in two wild populations of Arabidopsis.
Specimen part
View Samples