Loss of Ck1alpha produces 'flyabetic' larvae that are feeding defective. In addition we found other larvae with glucose elevations show feeding aversion.
Circulating glucose levels inversely correlate with <i>Drosophila</i> larval feeding through insulin signaling and SLC5A11.
Sex, Specimen part
View SamplesThe goal of this project was to analyze differential expression in head and neck cancer cells with various intrinsic radiosensitivity. The gene expression profiles of the cell lines were determined using the Human Genome U133 plus 2.0 Arrays (Affymetrix, Santa Clara, CA).
Fibronectin 1 is a potential biomarker for radioresistance in head and neck squamous cell carcinoma.
Specimen part, Cell line
View SamplesThe purpose of this study was to characterize global gene expression in human airway epithelial cells and identify cellular pathways associated with coarse, fine and ultrafine particulate matter (PM) exposures. Ambient PM was collected in 3 different size fractions from Chapel Hill air, particles were extracted from foam or filter matrices and lyophilized. Human primary airway epithelial cells were exposed to particles at 250g/ml or vehicle control for 6h in culture. Following exposure, RNA was isolated and hybridized to human HG U133A affymetrix chips.
Comparison of gene expression profiles induced by coarse, fine, and ultrafine particulate matter.
No sample metadata fields
View SamplesYamoa is marketed and sold as a dietary supplement with anecdotal positive effects in asthma and hay fever. We determined that Yamoa (ground bark of Funtumia elastica tree) stimulated innate immunity in part by affecting gamma delta T cells. Yamoa had distinct priming effects, very similar to, but more robust than, that of lipopolysaccharide (LPS), on bovine, mouse and human gamma delta T cells. However, the optimal effect was dependent on the presence of accessory cells. Gene expression patterns in bovine gamma delta T cells and monocytes induced by Yamoa were very similar to those induced by ultrapure LPS, but the agonists in Yamoa did not signal entirely through TLR4. Yamoa stimulated human cells to produce cytokines involved innate protection. The bioactive component of Yamoa was delineated to a complex polysaccharide fraction (Yam-I). Intraperitoneal injection of Yamoa and very low doses of Yam-I in mice induced rapid increases peritoneal neutrophils directed by changes chemokine expression. Yamoa and Yam-I were effective as therapeutic treatments in mice with Salmonella enterica serotype Typhimurium (ST) induced enterocolitis that resulted in decreased bacterial counts in feces. This initial characterization of the immune stimulatory properties of polysaccharides derived from Yamoa suggests potential mechanisms for positive effects in asthma and that they have potential for application in infectious disease settings. .
Polysaccharides derived from Yamoa (Funtumia elastica) prime gammadelta T cells in vitro and enhance innate immune responses in vivo.
No sample metadata fields
View SamplesActivation of Sonic Hedgehog signaling through expression of a constitutively active Smoothened allele under control of an aP2 adipocyte-restricted transgene in mice gives rise to aggressive skeletal muscle tumors that display the histologic and molecular characteristics of human embryonal rhabdomyosarcoma with high penetrance.
A mouse model of rhabdomyosarcoma originating from the adipocyte lineage.
Specimen part
View SamplesAlveolar macrophages from never smokers and active smokers were isolated by bronchoalveolar lavage and gene expression was measured. Chronic cigarette smoke exposure, as occurs in smoker's lungs, leads to significant changes in gene expression. Of note, RNA was isolated immediately following bronchoscopy. Alveolar macrophage levels were >95%.
Cigarette smoking decreases global microRNA expression in human alveolar macrophages.
Specimen part
View SamplesC/EBPa induces transdifferentiation of B cells into macrophages at high efficiencies and enhances reprogramming into induced pluripotent stem cells (iPSCs) when co-expressed with Oct4, Sox2, Klf4 and Myc (OSKM). However, how C/EBPa accomplishes these effects is unclear. We now found that transient C/EBPa expression followed by OSKM activation induces a 100 fold increase in iPSC reprogramming efficiency, involving 95% of the cells. During this conversion pluripotency and epithelial-mesenchymal transition genes become dramatically up-regulated and 60% of the cells express Oct4 within 2 days. C/EBPa acts as a pathbreaker since it transiently makes the chromatin of pluripotency genes more accessible to DNase I. It also induces the expression of the dioxygenase Tet2 and promotes its translocation to the nucleus where it binds to regulatory regions of pluripotency genes that become demethylated following OSKM induction. In line with these findings, overexpression of Tet2 enhances OSKM-induced B cell reprogramming. Since the enzyme is also required for efficient C/EBPa-induced immune cell conversion, our data suggest that Tet2 provides a mechanistic link between iPSC reprogramming and B cell transdifferentiation. The rapid iPS reprogramming approach described should help to fully elucidate the process and has potential clinical applications. Overall design: Change in gene expression, comparing primary B-cells treated with estradiol for 18h to induce C/EBPa to untreated cells.
Time-resolved gene expression profiling during reprogramming of C/EBPα-pulsed B cells into iPS cells.
No sample metadata fields
View SamplesQuiescent and dividing hemopoietic stem cells (HSC) display marked differences in their ability to move between the peripheral circulation and the bone marrow. Specifically, long-term engraftment potential predominantly resides in the quiescent HSC subfraction, and G-CSF mobilization results in the preferential accumulation of quiescent HSC in the periphery. In contrast, stem cells from chronic myeloid leukemia (CML) patients display a constitutive presence in the circulation. To understand the molecular basis for this, we have used microarray technology to analyze the transcriptional differences between dividing and quiescent, normal, and CML-derived CD34+ cells.
Transcriptional analysis of quiescent and proliferating CD34+ human hemopoietic cells from normal and chronic myeloid leukemia sources.
Specimen part, Disease, Subject
View SamplesWe identified a novel homozygous 15q13.3 microdeletion in a young boy with a complex neurodevelopmental disorder characterized by severe cerebral visual impairment with additional signs of congenital stationary night blindness (CSNB), congenital hypotonia with areflexia, profound intellectual disability, and refractory epilepsy. The mechanisms by which the genes in the deleted region exert their effect are unclear. In this paper we probed the role of downstream effects of the deletions as a contributing mechanism to the molecular basis of the observed phenotype. We analyzed gene expression of lymphoblastoid cells derived from peripheral blood of the proband and his relatives to ascertain the relative effects of the homozygous and heterozygous deletions.
Genome-wide gene expression in a patient with 15q13.3 homozygous microdeletion syndrome.
Cell line
View Samples18 different population of cells in different developmental stages in hematopoietic hierarchy have been purifyed by FACS analyses from wild type C57Bl6 mice and subjected to Micrroarray Affymetrix mouse 430.2 platform
CCAAT/enhancer binding protein alpha (C/EBP(alpha))-induced transdifferentiation of pre-B cells into macrophages involves no overt retrodifferentiation.
No sample metadata fields
View Samples