Zinc is a common metal in most ambient particulate matter (PM), and has been proposed to be a causative component in PM-induced adverse cardiovascular health effects. Zinc is also an essential metal and has the potential to induce many physiological and nonphysiological changes. Most toxicological studies employ high levels of zinc. We hypothesized that subchronic inhalation of environmentally relevant levels of zinc would cause cardiac changes in healthy rats. To address this question, healthy male WKY rats (12 wks age) were exposed via nose only inhalation to filtered air or 10, 30 or 100 ug/m3 of aerosolized Zn in sulfate form, 5 h/d, 3 d/wk for 16 wks. Necropsies occurred 48 h after the last exposure to ensure effects were due to chronic exposure rather than the last exposure. No significant changes were observed in neutrophil or macrophage count, total lavageable cells, or enzyme activity levels (lactate dehydrogenase, n-acetyl ?-D-glucosaminidase, ?-glutamyl transferase) in bronchoalveolar lavage fluid, indicating minimal pulmonary effect. In the heart, cytosolic glutathione peroxidase activity decreased, while mitochondrial ferritin levels increased and succinate dehydrogenase activity decreased, suggesting a mitochondria-specific effect. Although no cardiac pathology was seen, cardiac gene array analysis indicated changes in genes involved in cell signaling, a pattern concordant with known zinc effects. These data indicate that inhalation of zinc at environmentally relevant levels may induce cardiac effects. While changes are small in healthy rats, these may be especially relevant in individuals with pre-existent cardiovascular disease.
Subchronic inhalation of zinc sulfate induces cardiac changes in healthy rats.
No sample metadata fields
View SamplesDEP exposure is linked to increases in cardiovascular effects. This effect is enhanced in individuals with pre-existing disease. Animal models of cardiovascular disease are used to study this susceptibility. The heart is rich in mitochondria, which produce high levels of free radicals, leading to inactivation of tricarboxylic acid cycle enzymes. We hypothesized that a 4-wk DEP inhalation would result in strain-related structural impairment of cardiac mitochondria and changes in these enzyme activities in WKY and SHR. Male rats (12-14 wks age) were exposed whole body to air or 0.5 or 2.0 mg/m3 DEP for 6h/d, 5 d/wk for 4 wks. Neutrophilic influx was noted in the bronchoalveolar lavage fluid in both strains. A slightly lower level of baseline cardiac mitochondrial aconitase activity was seen in SHR than WKY. Aconitase activity appeared to be decreased in an exposure related manner in both strains. Significantly higher baseline levels of cardiac cytosolic ferritin and aconitase activity were seen in the SHR than WKY. No exposure-related changes were noted in either of these measures. Mitochondrial succinate and isocitrate dehydrogenase activities were not changed following DEP exposure in either strain. Transmission electron microscopy images of the heart indicated abnormalities in cardiac mitochondria of control SHR but not control WKY. No exposure related ultrastructural changes were induced by DEP in either strain. In conclusion, strain differences in cardiac biomarkers of oxidative stress and structure of mitochondria exist between SHR and WKY. DEP exposure results in small changes in cardiac mitochondrial and cytosolic markers of oxidative stress. (Abstract does not represent USEPA policy.)
One-month diesel exhaust inhalation produces hypertensive gene expression pattern in healthy rats.
Specimen part
View SamplesMgrR is a newly characterized Hfq dependent small RNA RNA. The expression of MgrR is regulated by Two component system, PhoPQ regulon, which senses low Mg2+ in environment. It has been reported that Hfq-binding sRNAs base pair with target RNAs, frequently leading to rapid degradation of target messages or, less frequently, to stabilization, both of which can be assayed by using microarrays. In order to search for the target genes of MgrR, we therefore examined the consequences of MgrR expression on mRNA abundance under two conditions. In condition 1, the chromosomal copy of mgrR was deleted and MgrR was expressed for 15 from an induced plac-mgrR plasmid and compared to cells carrying a vector induced for the same period. In condition 2, the expression of mRNAs was compared in wild-type cells (mgrR+) and the mgrR deletion strain, both grown in LB; because MgrR levels are fairly high under our normal growth conditions, this allowed analysis of both the direct and indirect (long-term) effects of MgrR.
A PhoQ/P-regulated small RNA regulates sensitivity of Escherichia coli to antimicrobial peptides.
No sample metadata fields
View SamplesTranscription termination factor Rho is essential in enterobacteria. We inhibited Rho activity with bicyclomycin and used microarray experiments to assess Rho function on a genome-wide scale. Rho is a global regulator of gene expression that matches E. coli transcription to translational needs. Remarkably, genes that are most repressed by Rho are prophages and other horizontally-acquired portions of the genome. Elimination of these foreign DNA elements increases resistance to bicyclomycin. Although rho remains essential, such reduced-genome bacteria no longer require Rho cofactors NusA and NusG. Thus, Rho termination, supported by NusA and NusG, is required to suppress the toxic activity of foreign DNA.
Termination factor Rho and its cofactors NusA and NusG silence foreign DNA in E. coli.
Compound
View SamplesTo determine whether the polyamide-Chl conjugate 1R-Chl would cause similar changes in global gene expression in K562 cells, affymetrix gene chip analysis was performed using 1R-Chl. Through class comparison analysis, 1R-Chl affected the levels of transcription and genes of interest were determined.
Small molecules targeting histone H4 as potential therapeutics for chronic myelogenous leukemia.
Sex, Age, Disease
View SamplesLymphoblast cells from a patient with Freidriech's Ataxia were incubated with pyrrole-imidazole polyamides targeted to the GAA triplet repeat in the intron 1. The polyamides were shown in cell culture to increase levels of endogenous frataxin mRNA. A normal sibling derived lymphoblast cell line was used as a control.
DNA sequence-specific polyamides alleviate transcription inhibition associated with long GAA.TTC repeats in Friedreich's ataxia.
No sample metadata fields
View SamplesBackground: Cancer stem cells are presumed to have virtually unlimited proliferative and self-renewal abilities and to be highly resistant to chemotherapy, a feature that is associated with overexpression of ATP-binding cassette transporters. We investigated whether prolonged continuous selection of cells for drug resistance enriches cultures for cancer stem-like cells.
Prolonged drug selection of breast cancer cells and enrichment of cancer stem cell characteristics.
Cell line, Treatment
View SamplesBackground: Friedreich ataxia, an autosomal recessive neurodegenerative and cardiac disease, is caused by abnormally low levels of frataxin, an essential mitochondrial protein. All Friedreich ataxia patients carry a GAA/TTC repeat expansion in the first intron of the frataxin gene, either in the homozygous state or in compound heterozygosity with other loss-of-function mutations. The GAA expansion inhibits frataxin expression through a heterochromatin-mediated repression mechanism. Histone modifications that are characteristic of silenced genes in heterochromatic regions occur at expanded alleles in cells from Friedreich ataxia patients, including increased trimethylation of histone H3 at lysine 9 and hypoacetylation of histones H3 and H4.
HDAC inhibitors correct frataxin deficiency in a Friedreich ataxia mouse model.
No sample metadata fields
View SamplesStreptococcus suis is a major swine pathogen that can be transmitted to humans causing severe symptoms. A large human outbreak was described in China, where approximately 25% out of 215 infected humans developed an unusual streptococcal toxic shock-like syndrome (STSLS). Albeit increased expression of inflammatory mediators following infection by the Chinese S. suis strain was suggested as responsible for STSLS case severity, the mechanisms involved are still poorly understood. In this study, we investigated the host innate immune response to infection by either one of 3 strains of S. suis: 89-1591 (Canadian, intermediate virulence), P1/7 (European, high virulence), and SC84 (Chinese, epidemic strain). Using Illumina microarray and validating those results with qPCR and Luminex assay, infected mice showed elevated expression of mainly pro-inflammatory chemokine and cytokine genes. Generally, pro-inflammatory genes were expressed at a higher level in mice infected with S. suis strain SC84 > P1/7 > 89-1591. Interestingly, IFN was expressed at much higher levels only in mice infected with the S. suis strain SC84, which could potentially explain some of the STSLS symptoms. IFN-KO mice infected with SC84 showed better survival than WT mice while no differences was seen in mice infected with highly virulent P1/7 strain. Overall, our results show an important role of IFN in S. suis infections and might explain in part the increased virulence of SC84 responsible for a recent outbreak in China.
Exacerbated type II interferon response drives hypervirulence and toxic shock by an emergent epidemic strain of Streptococcus suis.
Sex, Specimen part
View SamplesStreptococcus suis is a major swine pathogen that can be transmitted to humans causing severe symptoms. A large human outbreak was described in China, where approximately 25% out of 215 infected humans developed an unusual streptococcal toxic shock-like syndrome (STSLS). Albeit increased expression of inflammatory mediators following infection by the Chinese S. suis strain was suggested as responsible for STSLS case severity, the mechanisms involved are still poorly understood. In this study, we investigated the host innate immune response to infection by either one of 3 strains of S. suis: 89-1591 (Canadian, intermediate virulence), P1/7 (European, high virulence), and SC84 (Chinese, epidemic strain). Using Illumina microarray and validating those results with qPCR and Luminex assay, infected mice showed elevated expression of mainly pro-inflammatory chemokine and cytokine genes. Generally, pro-inflammatory genes were expressed at a higher level in mice infected with S. suis strain SC84 > P1/7 > 89-1591. Interestingly, IFN was expressed at much higher levels only in mice infected with the S. suis strain SC84, which could potentially explain some of the STSLS symptoms. IFN-KO mice infected with SC84 showed better survival than WT mice while no differences was seen in mice infected with highly virulent P1/7 strain. Overall, our results show an important role of IFN in S. suis infections and might explain in part the increased virulence of SC84 responsible for a recent outbreak in China.
Exacerbated type II interferon response drives hypervirulence and toxic shock by an emergent epidemic strain of Streptococcus suis.
Sex, Specimen part
View Samples