PMK-1 is involved in the heat stress response of C. elegans, translocates to the nucleus upon heat exposure and influences the expression of chaperone genes, proteasomal subunits and protein-biosynthesis related genes. Overall design: Differential Gene expression of WT and pmk-1 deletion mutant (KU25) after 5 hours at 35°C
The p38 MAPK PMK-1 shows heat-induced nuclear translocation, supports chaperone expression, and affects the heat tolerance of Caenorhabditis elegans.
Cell line, Subject
View SamplesThe role of innate immunity in modulating severity of chemotherapy-induced complications is so far unclear. The aim of this study was to determine how TLR2 may influence MTX-induced mucositis in the small intestine in mice. We used microarrays to assess gene expression profiles in proximal jejunum of WT vs. TLR2 KO mice after systemic treatment with MTX.
TLR signaling modulates side effects of anticancer therapy in the small intestine.
Specimen part, Treatment
View SamplesThe objective of the overall study was to determine the effects of oral vitamin D supplementation on alveolar macrophages from human subjects. In this substudy, subjects treated with vitamin D (intervention group) in paired analysis had small, but significant effects on immune-related differential gene expression pre versus post supplementation.
Effects of vitamin D supplementation on alveolar macrophage gene expression: preliminary results of a randomized, controlled trial.
Specimen part, Treatment, Subject
View SamplesCigarette smoking is the leading cause of emphysema in the United States. Alveolar macrophages play a critical role in the inflammation-mediated remodeling of the lung parenchyma in emphysema. However, the exact gene pathways and the role of DNA methylation in moderating this pathological transformation are not known. In order to more exactly understand this process, we compared genome-wide expression and methylation signatures of alveolar macrophages isolated from heavy smokers with those isolated from non-smoking controls. We found enrichment of differential methylation in genes from immune system and inflammatory pathways as determined by standard pathway analysis. Consistent with recent findings, significant methylation changes were particularly enriched in the areas flanking CpG islands (CpG shores). Analysis of matching gene expression data demonstrated a parallel enrichment for changes in immune system and inflammatory pathways. We conclude that alveolar macrophages from the lungs of smokers demonstrate coordinated changes in DNA methylation and gene expression that link to inflammation pathways. We suggest that further studies of DNA methylation in immune and inflammation-related gene expression are needed to understand the pathogenesis of emphysema and other smoking-related diseases.
Coordinated DNA methylation and gene expression changes in smoker alveolar macrophages: specific effects on VEGF receptor 1 expression.
Specimen part, Disease
View SamplesStabilin-1/CLEVER-1 is a multidomain protein present in lymphatic and vascular endothelial cells and in M2 immunosuppressive macrophages. Stabilin-1 functions in scavenging, endocytosis and leukocyte adhesion to and transmigration through the endothelial cells. Overall design: The transcriptome of liver tissue in 5wk old Stab1 knock-out mice was compared to that of corresponding wild type mice
Stabilin-1 expression defines a subset of macrophages that mediate tissue homeostasis and prevent fibrosis in chronic liver injury.
Age, Specimen part, Subject
View SamplesCancer originates as the progressive accumulation of genetic mutations in proto-oncogenes and tumor suppressors. However, the early events underlying tumor initiation remain largely elusive, mostly due to the general lack of information regarding the cells-of-origin responsible for tumor formation as well as the precise impacts of genetic insults on tumor initiation in vivo. Here, we demonstrate that Sox2-positive (Sox2+) adult stem cells are responsible for epithelial squamous tumor formation. Conditional expression of oncogenic Kras (KrasG12D) and knockout of p53 (also known as Trp53) in Sox2+ cells quickly and specifically resulted in the formation of squamous tumors in the forestomach and esophagus. GFP-based lineage tracing experiments demonstrated that Sox2+ cells are the cells-of-origin of squamous tumors in the esophagus and forestomach. Of note, our data showed that p53 deletion alone did not suffice for tumor initiation. On the contrary, tumor initiation was observed upon KrasG12D activation whereas p53 deletion further contributed to the malignancy of the generated tumors, pointing out distinct roles for Kras activation and p53 deletion in squamous tumor formation and progression, to which a multihit carcinogenesis model can be applied. Global gene expression analysis revealed secreting factors upregulated in the generated tumors induced by oncogenic Kras, which contribute to tumor progression. Taken together, these results demonstrate that epithelial squamous tumors can specifically originate as a consequence of defined genetic mutations in a Sox2+ cell population and highlight the connections between proliferative stem cells and tumor development in vivo. Overall design: Expression profiling of mouse tissues with genetically induced tumors by RNA-Seq
Mutations in foregut SOX2<sup>+</sup> cells induce efficient proliferation via CXCR2 pathway.
No sample metadata fields
View SamplesType 1 diabetes is a multigenic disease caused by T-cell mediated destruction of the insulin producing -cells. Although conventional (targeted) approaches of identifying causative genes have advanced our knowledge of this disease, many questions remain unanswered. Using a whole molecular systems study, we unraveled the genes/molecular pathways that are altered in CD4 T-cells from young NOD mice prior to insulitis (lymphocytic infiltration into the pancreas). Many of the CD4 T-cell altered genes lie within known diabetes susceptibility regions (Idd), including several genes in the diabetes resistance region Idd13 and two genes (Khdrbs1 and Ptp4a2) in the CD4 T-cell diabetogenic activity region Idd9/11. Alterations involved apoptosis/cell proliferation and metabolic pathways (predominant at 2 weeks), inflammation and cell signaling/activation (predominant at 3 weeks), and innate and adaptive immune responses (predominant at 4 weeks). We identified several factors that may regulate these abnormalities: IRF-1, HNF4A, TP53, BCL2L1 (lies within Idd13), IFNG, IL4, IL15, and prostaglandin E2, which were common to all 3 ages; AR and IL6 to 2 and 4 weeks; and Interferon (IFN-I) and IRF-7 to 3 and 4 weeks. Others were unique to the various ages (e. g. MYC, JUN, and APP to 2 weeks; TNF, TGFB1, NFKB, ERK, and p38MAPK to 3 weeks; and IL12 and STAT4 to 4 weeks). Our data suggest that diabetes resistance genes in Idd13 and Idd9/11, and BCL2L1, IL6-AR and IFNG-IRF-1-IFN-I/IRF-7-IL12 pathways play an important role in CD4 T-cells in the early pathogenesis of autoimmune diabetes. Thus, the alternative approach of investigation at the molecular systems level has captured new information, which combined with validation studies, offers the opportunity to test hypotheses on the role played by the genes/molecular pathways identified in this study, to understand better the mechanisms of autoimmune diabetes in CD4 T-cells, and to develop new therapeutic strategies for the disease.
Molecular pathway alterations in CD4 T-cells of nonobese diabetic (NOD) mice in the preinsulitis phase of autoimmune diabetes.
Age, Specimen part
View SamplesIslet leukocytic infiltration (insulitis) is first obvious at around 4 weeks of age in the NOD mouse a model for human type 1 diabetes (T1DM). The molecular events leading to insulitis are poorly understood. Since TIDM is caused by numerous genes, we hypothesized that multiple molecular pathways are altered and interact to initiate this disease.
Molecular phenotyping of immune cells from young NOD mice reveals abnormal metabolic pathways in the early induction phase of autoimmune diabetes.
Age, Specimen part
View SamplesHypoxia plays a key pathogenic role in the outcome of many pathologic conditions. To elucidate how organisms successfully adapt to hypoxia, a population of Drosophila melanogaster was generated, through an iterative selection process, that is able to complete its lifecycle at 4% O2, a level lethal to the starting parental population. Transcriptomic analysis of flies adapted for >200 generations was performed to identify pathways and processes that contribute to the adapted phenotype, comparing gene expression of three developmental stages with generation-matched control flies. A third group was included, hypoxia-adapted flies reverted to 21% O2 for five generations, to address the relative contributions of genetics and hypoxic environment to the gene expression differences. We identified the largest number of expression differences in 0.5-3 hr post-eclosion adult flies that were hypoxia-adapted and maintained in 4% O2, and found evidence that changes in Wnt signaling contribute to hypoxia tolerance in flies.
Wnt pathway activation increases hypoxia tolerance during development.
No sample metadata fields
View SamplesCerebellar development requires regulated proliferation of cerebellar granule neuron progenitors (CGNPs). Inadequate CGNP proliferation causes cerebellar hypoplasia while excessive CGNP proliferation can cause medulloblastoma, the most common malignant pediatric brain tumor. Although Sonic Hedgehog (SHH) signaling is known to activate CGNP proliferation, the mechanisms down-regulating proliferation are less defined. We investigated CGNP regulation by GSK-3, which down-regulates proliferation in the forebrain, gut and breast by suppressing mitogenic WNT signaling. In striking contrast, we found that co-deleting Gsk-3α and Gsk-3β blocked CGNP proliferation, causing severe cerebellar hypoplasia. Transcriptomic analysis showed activated WNT signaling and up-regulated Cdkn1a in Gsk-3-deleted CGNPs. These data show that a GSK-3/WNT axis modulates the developmental proliferation of CGNPs and the pathologic growth of SHH-driven medulloblastoma. The requirement for GSK-3 in SHH-driven proliferation suggests that GSK-3 may be targeted for SHH-driven medulloblastoma therapy.
GSK-3 modulates SHH-driven proliferation in postnatal cerebellar neurogenesis and medulloblastoma.
Specimen part
View Samples