This SuperSeries is composed of the SubSeries listed below.
X chromosome control of meiotic chromosome synapsis in mouse inter-subspecific hybrids.
Specimen part
View SamplesExpression profiling of isolated populations of prepachytene spermatocytes (LP), pachytene spermatocytes (RP) and spermatids (ST) from PWD and B6 was performed to study the genome wide variation in gene expression between two mouse subspecies. To evaluate the transcriptional difference between B6 and PWD in during meiosis, we compared their transcriptomes in sorted populations of pre-pachytene primary spermatocytes (Leptonema, Zygotene and Pachytene), pachytene spermatocytes (Mid-late pachytene and diplotene) and spermatids.
X chromosome control of meiotic chromosome synapsis in mouse inter-subspecific hybrids.
Specimen part
View SamplesPoly(ADP-ribose) polymerase-2 (PARP-2) is acknowledged as a DNA repair enzyme; however, recently metabolic properties had been attributed to it. Hereby, we examined the metabolic consequences of PARP-2 ablation in liver. Microarray analysis of PARP-2 knockdown HepG2 cells revealed the dysregulation of lipid and cholesterol metabolism genes. Induction of cholesterol biosynthesis genes stemmed from the enhanced expression of sterol-regulatory element binding protein (SREBP)-1. We revealed that PARP-2 is a suppressor of the SREBP-1 promoter, therefore ablation of PARP-2 induces SREBP-1 expression and consequently cholesterol synthesis. PARP-2-/- mice had higher SREBP-1 expression that was translated into enhanced hepatic and serum cholesterol levels.
Deletion of PARP-2 induces hepatic cholesterol accumulation and decrease in HDL levels.
No sample metadata fields
View SamplesBackground: MicroRNA-196b-5p (miR-196b-5p) has been previously involved in carcinogenesis, though its role in colorectal cancer (CRC) patients and biology remains controversially. In our current study, we systematically explored the clinical significance and biological relevance of miR-196b-5p, as well as the underlying molecular mechanisms regulated by miR-196b-5p in colorectal cancer.
miR-196b-5p Regulates Colorectal Cancer Cell Migration and Metastases through Interaction with HOXB7 and GALNT5.
Cell line
View SamplesAnalysis of differential gene expression. The influence of a constitutively activated mutant Kit receptor on gene expression in fetal hematopoietic cells was analyzed. Results provide information of genes and cellular processes that are influenced by Kit signaling.
Kit transduced signals counteract erythroid maturation by MAPK-dependent modulation of erythropoietin signaling and apoptosis induction in mouse fetal liver.
Specimen part
View SamplesSingle cell RNA sequencing of FACS purified mouse microglia from embryogenesis to old age, and following injury using a demyelinating mouse model. Overall design: 41 total animals, 3-4 replicates per timepoint and condition. E14.5, P4/P5, P30, P100, P540, and Injury
Single-Cell RNA Sequencing of Microglia throughout the Mouse Lifespan and in the Injured Brain Reveals Complex Cell-State Changes.
Sex, Cell line, Treatment, Subject
View SamplesType 1 diabetes is a multigenic disease caused by T-cell mediated destruction of the insulin producing -cells. Although conventional (targeted) approaches of identifying causative genes have advanced our knowledge of this disease, many questions remain unanswered. Using a whole molecular systems study, we unraveled the genes/molecular pathways that are altered in CD4 T-cells from young NOD mice prior to insulitis (lymphocytic infiltration into the pancreas). Many of the CD4 T-cell altered genes lie within known diabetes susceptibility regions (Idd), including several genes in the diabetes resistance region Idd13 and two genes (Khdrbs1 and Ptp4a2) in the CD4 T-cell diabetogenic activity region Idd9/11. Alterations involved apoptosis/cell proliferation and metabolic pathways (predominant at 2 weeks), inflammation and cell signaling/activation (predominant at 3 weeks), and innate and adaptive immune responses (predominant at 4 weeks). We identified several factors that may regulate these abnormalities: IRF-1, HNF4A, TP53, BCL2L1 (lies within Idd13), IFNG, IL4, IL15, and prostaglandin E2, which were common to all 3 ages; AR and IL6 to 2 and 4 weeks; and Interferon (IFN-I) and IRF-7 to 3 and 4 weeks. Others were unique to the various ages (e. g. MYC, JUN, and APP to 2 weeks; TNF, TGFB1, NFKB, ERK, and p38MAPK to 3 weeks; and IL12 and STAT4 to 4 weeks). Our data suggest that diabetes resistance genes in Idd13 and Idd9/11, and BCL2L1, IL6-AR and IFNG-IRF-1-IFN-I/IRF-7-IL12 pathways play an important role in CD4 T-cells in the early pathogenesis of autoimmune diabetes. Thus, the alternative approach of investigation at the molecular systems level has captured new information, which combined with validation studies, offers the opportunity to test hypotheses on the role played by the genes/molecular pathways identified in this study, to understand better the mechanisms of autoimmune diabetes in CD4 T-cells, and to develop new therapeutic strategies for the disease.
Molecular pathway alterations in CD4 T-cells of nonobese diabetic (NOD) mice in the preinsulitis phase of autoimmune diabetes.
Age, Specimen part
View SamplesIslet leukocytic infiltration (insulitis) is first obvious at around 4 weeks of age in the NOD mouse a model for human type 1 diabetes (T1DM). The molecular events leading to insulitis are poorly understood. Since TIDM is caused by numerous genes, we hypothesized that multiple molecular pathways are altered and interact to initiate this disease.
Molecular phenotyping of immune cells from young NOD mice reveals abnormal metabolic pathways in the early induction phase of autoimmune diabetes.
Age, Specimen part
View SamplesHypoxia plays a key pathogenic role in the outcome of many pathologic conditions. To elucidate how organisms successfully adapt to hypoxia, a population of Drosophila melanogaster was generated, through an iterative selection process, that is able to complete its lifecycle at 4% O2, a level lethal to the starting parental population. Transcriptomic analysis of flies adapted for >200 generations was performed to identify pathways and processes that contribute to the adapted phenotype, comparing gene expression of three developmental stages with generation-matched control flies. A third group was included, hypoxia-adapted flies reverted to 21% O2 for five generations, to address the relative contributions of genetics and hypoxic environment to the gene expression differences. We identified the largest number of expression differences in 0.5-3 hr post-eclosion adult flies that were hypoxia-adapted and maintained in 4% O2, and found evidence that changes in Wnt signaling contribute to hypoxia tolerance in flies.
Wnt pathway activation increases hypoxia tolerance during development.
No sample metadata fields
View SamplesCerebellar development requires regulated proliferation of cerebellar granule neuron progenitors (CGNPs). Inadequate CGNP proliferation causes cerebellar hypoplasia while excessive CGNP proliferation can cause medulloblastoma, the most common malignant pediatric brain tumor. Although Sonic Hedgehog (SHH) signaling is known to activate CGNP proliferation, the mechanisms down-regulating proliferation are less defined. We investigated CGNP regulation by GSK-3, which down-regulates proliferation in the forebrain, gut and breast by suppressing mitogenic WNT signaling. In striking contrast, we found that co-deleting Gsk-3α and Gsk-3β blocked CGNP proliferation, causing severe cerebellar hypoplasia. Transcriptomic analysis showed activated WNT signaling and up-regulated Cdkn1a in Gsk-3-deleted CGNPs. These data show that a GSK-3/WNT axis modulates the developmental proliferation of CGNPs and the pathologic growth of SHH-driven medulloblastoma. The requirement for GSK-3 in SHH-driven proliferation suggests that GSK-3 may be targeted for SHH-driven medulloblastoma therapy.
GSK-3 modulates SHH-driven proliferation in postnatal cerebellar neurogenesis and medulloblastoma.
Specimen part
View Samples