affy_rice_2011_03 - affy_compartimentation_rice_albumen_embryon - During germination, the rice seed goes from a dry quiescent state to an active metabolism. As with all cereals, the rice seed is highly differentiated between the embryo (that will give rise to the future plantlet) and the endosperm (that contains the seed storage compounds and that will degenerate). The molecular mechanisms operating in the rice seed embryo have begun to be described. Yet, very few studies have focused specifically on the endosperm during the germination process. In particular, the endosperm is mostly addressed with regards to its storage proteins but we have detected a large protein diversity by two-dimensional electrophoresis. Similarly, the endosperm is rich in total RNA which suggest that gene expression coming from seed maturation could play a role during the germination process. In this context, we want to compare the transcriptome of the embryo and the endosperm during rice seed germination. -We germinate rice seeds of the first sequenced rice cultivar i.e. Nipponbare during 0, 4, 8, 12, 16 and 24h of imbibition in sterile distilled water. Germination occurs under constant air bubbling, in the dark at 30C. These rice seeds are then manually dissected into embryo and endosperm fractions. -The embryo-derived samples are abbreviated in E while the endosperm samples are abbreviated A. The germination time-point is indicated after the letter (e.g. E8 for embryo samples harvested after 8 hours of germination). Finally, the biological repetition number is indicated before the letter and the time digit (e.g. 1-E8 for an embryo sample from the first repetition at 8 hours of imbibition).
Compartmentation and dynamics of flavone metabolism in dry and germinated rice seeds.
Specimen part
View SamplesLung cancer is a highly malignant tumor and the majority of cancer-related deaths are due to metastasis. The tumor microenvironment (TME) plays a fundamental role in the metastatic spread of tumor cells. Among other stromal cells, mesenchymal stem cells (MSCs) are known to be present within the TME and to be involved in cancer progression. However the majority of previous studies have been performed on bone marrow-derived MSCs. To investigate the role of the TME on the pulmonary MSC phenotype, we compared the expression profile of paired MSCs isolated from lung tumor (T-) and normal adjacent tissues (N-) from lung carcinoma patients.
Reciprocal modulation of mesenchymal stem cells and tumor cells promotes lung cancer metastasis.
Specimen part, Disease stage, Subject
View SamplesIn the past three years the role of inflammatory cytokines and chemokines in tumour promotion and progression has been intensively studied. The chemokine receptor CXCR4 and its ligand CXCL12 are commonly expressed in malignant cells from primary tumours, metastases and also in malignant cell lines. To investigate the biological significance of this receptor/ligand pair, we knocked-down CXCR4 expression in ovarian cancer cell line IGROV-1 using shRNA, and established stable cell lines.
A dynamic inflammatory cytokine network in the human ovarian cancer microenvironment.
No sample metadata fields
View SamplesWe present evidence for an autocrine cytokine network in human ovarian cancer that has paracrine actions on the tumour microenvironment. In experiments using bioinformatics analysis of large gene expression array datasets and ovarian cancer biopsies, we found that the inflammatory cytokines TNF- and IL-6, the chemokine receptor CXCR4 and its ligand CXCL12, are co-regulated in malignant cells. We named this co-regulation the TNF network.
A dynamic inflammatory cytokine network in the human ovarian cancer microenvironment.
Specimen part
View SamplesAging is often associated with cognitive decline, but many elderly individuals maintain a high level of function throughout life. Here we studied outbred rats, which also exhibit individual differences across a spectrum of outcomes that includes both preserved and impaired spatial memory. Previous work in this model identified the CA3 subfield of the hippocampus as a region critically affected by age and integral to differing cognitive outcomes. Earlier microarray profiling revealed distinct gene expression profiles in the CA3 region, under basal conditions, for aged rats with intact memory and those with impairment. Because prominent age-related deficits within the CA3 occur during neural encoding of new information, here we used microarray analysis to gain a broad perspective of the aged CA3 transcriptome under activated conditions. Behaviorally induced CA3 expression profiles differentiated aged rats with intact memory from those with impaired memory. In the activated profile, we observed substantial numbers of genes (greater than 1000) exhibiting increased expression in aged unimpaired rats relative to aged impaired, including many involved in synaptic plasticity and memory mechanisms. This unimpaired aged profile also overlapped significantly with a learning induced gene profile previously acquired in young adults. Alongside the increased transcripts common to both young learning and aged rats with preserved memory, many transcripts behaviorally-activated in the current study had previously been identified as repressed in the aged unimpaired phenotype in basal expression. A further distinct feature of the activated profile of aged rats with intact memory is the increased expression of an ensemble of genes involved in inhibitory synapse function, which could control the phenotype of neural hyperexcitability found in the CA3 region of aged impaired rats. These data support the conclusion that aged subjects with preserved memory recruit adaptive mechanisms to retain tight control over excitability under both basal and activated conditions.
Behaviorally activated mRNA expression profiles produce signatures of learning and enhanced inhibition in aged rats with preserved memory.
Specimen part
View SamplesThe CMVpp65 protein contains 2 bipartite nuclear localization signals (NLS) at 415-438aa and 537-561aa near the carboxy terminus of CMVpp65 and a phosphate binding site related to kinase activity at lysine-436. A mutation of pp65 having K436N (CMVpp65mII) and further deletion of aa537-561 resulted in a novel protein (pp65mIINLSKO) that is kinase-less and has markedly reduced nuclear localization. The purpose of this report was to study the biologic characterization of this protein and its immunogenicity compared to native pp65.Using RNA microarray analysis, expression of the CMVpp65mIINLSKO had less effect on cell cycle pathways than did the native CMVpp65 and a greater effect on cell surface signalling pathways involving immune activity. It is concluded that the removal of the primary NLS motif from pp65 does not impair its immunogenicity and may actually be advantageous in the design of a vaccine.
Biologic and immunologic effects of knockout of human cytomegalovirus pp65 nuclear localization signal.
No sample metadata fields
View SamplesPeroxisome proliferator-activated receptor alpha (PPAR) is a key regulator of hepatic fat oxidation that serves as an energy source during starvation. Vanin-1 has been described as a putative PPAR target gene in liver, but its function in hepatic lipid metabolism is unknown. We investigated the regulation of vanin-1, and total vanin activity, by PPAR in mice and humans. Furthermore, the function of vanin-1 in the development of hepatic steatosis in response to starvation was examined in Vnn1 deficient mice, and in rats treated with an inhibitor of vanin activity. Liver microarray analyses reveals that Vnn1 is the most prominently regulated gene after modulation of PPAR activity. In addition, activation of mouse PPAR regulates hepatic- and plasma vanin activity. In humans, consistent with regulation by PPAR, plasma vanin activity increases in all subjects after prolonged fasting, as well as after treatment with the PPAR agonist fenofibrate. In mice, absence of vanin-1 exacerbates the fasting-induced increase in hepatic triglyceride levels. Similarly, inhibition of vanin activity in rats induces accumulation of hepatic triglycerides upon fasting. Microarray analysis reveal that the absence of vanin-1 associates with gene sets involved in liver steatosis, and reduces pathways involved in oxidative stress and inflammation. We show that hepatic vanin-1 is under extremely sensitive regulation by PPAR and that plasma vanin activity could serve as a readout of changes in PPAR activity in human subjects. In addition, our data propose a role for vanin-1 in regulation of hepatic TG levels during fasting.
PPAR-alpha dependent regulation of vanin-1 mediates hepatic lipid metabolism.
Sex, Specimen part, Time
View SamplesVanin1, a regulator of vitamin B5 metabolism, is expressed by sarcoma tumors. We evaluated its impact on sarcoma growth by using sarcoma cell lines derived from p16p19Vnn1-deficient mice and further transduced with an oncogenic RasV12 oncogene (R tumors) in the presence or not of a catalytically active (VR tumors) or mutated (VdR tumors) Vnn1 isoform.
Vnn1 pantetheinase limits the Warburg effect and sarcoma growth by rescuing mitochondrial activity.
Specimen part, Cell line
View SamplesThe use of low quality RNA samples in whole-genome gene expression profiling remains controversial. It is unclear if transcript degradation in low quality RNA samples occurs uniformly, in which case the effects of degradation can be normalized, or whether different transcripts are degraded at different rates, potentially biasing measurements of expression levels. This concern has rendered the use of low quality RNA samples in whole-genome expression profiling problematic. Yet, low quality samples are at times the sole means of addressing specific questions – e.g., samples collected in the course of fieldwork.
RNA-seq: impact of RNA degradation on transcript quantification.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Rapid encoding of new information alters the profile of plasticity-related mRNA transcripts in the hippocampal CA3 region.
No sample metadata fields
View Samples