To understand differences in the pathogenesis of synovial hyperplasia during TNF-induced arthritis, we compared the global gene expression of hTNFtg and hTNFtg;Rsk2-/y primary synovial fibroblasts.
Rsk2 controls synovial fibroblast hyperplasia and the course of arthritis.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Strain-specific activation of the NF-kappaB pathway by GRA15, a novel Toxoplasma gondii dense granule protein.
Specimen part
View SamplesToxoplasma strains have been shown to modulate host cell transcription. We have found a type II Toxoplasma gene, GRA15, which activates the nuclear translocation of the NF-kappaB p65 transcription factor.
Strain-specific activation of the NF-kappaB pathway by GRA15, a novel Toxoplasma gondii dense granule protein.
Specimen part
View SamplesToxoplasma strains have been shown to modulate host cell transcription. We have found a type II Toxoplasma gene, GRA15, which activates the nuclear translocation of the NF-kappaB p65 transcription factor.
Strain-specific activation of the NF-kappaB pathway by GRA15, a novel Toxoplasma gondii dense granule protein.
Specimen part
View SamplesWe studied the in vitro and in vivo efficacy of the HDAC inhibitor Givinostat/ITF2357 in BCP-ALL with CRLF2 rearrangements. We used BCP-ALL CRLF2- rearranged MHH-CALL4 and MUTZ5 cell lines as well as blasts from CRLF2 rearranged BCP-ALL patients and patients derived xenograft samples. We conclude that Givinostat may represent a novel and effective tool, in combination with current chemotherapy, to treat this subsets of ALL with poor prognosis and chemotherapy-related toxicity.
The histone deacetylase inhibitor givinostat (ITF2357) exhibits potent anti-tumor activity against CRLF2-rearranged BCP-ALL.
Specimen part, Treatment
View SamplesTranscriptome analysis was performed from human U87 glioblastoma cell clones: U87 IRE1.NCK DN (U87dn, IRE1 dominant negative) and U87 control (U87ctrl, empty plasmid). Cells were grown in DMEM supplemented with 10% FBS and glutamine for 16 hours in culture prior mRNA isolation and analyses
Inositol-requiring enzyme 1alpha is a key regulator of angiogenesis and invasion in malignant glioma.
Cell line
View SamplesIn the yeast Saccharomyces cerevisiae, cleavage factor I (CFI) and cleavage and polyadenylation factor (CPF) build the core of the transcription termination machinery. CFI comprises the Rna14, Rna15, Pcf11, and Clp1 proteins, as well as the associated Hrp5 RNA-binding protein. We found that CFI participates in the DNA damage response and that rna14-1 shows synthetic growth defects with mutants of different repair pathways, including homologous recombination, non-homologous end joining, post replicative repair, mismatch repair, and nucleotide excision repair, implicating that impaired RNAPII termination and 3-end processing decreases the cellular tolerance for DNA damage. Beyond replication progression defects, we found that bypass of the G1/S checkpoint in rna14-1 cells leads to synthetic sickness, accumulation of phosphorylated H2A, as well as increase in Rad52-foci and in recombination. Our data provide evidence that CFI dysfunction impairs RNAPII turnover, leading to replication hindrance and lower tolerance to exogenous DNA damage. These findings underscore the importance of coordination between transcription termination, DNA repair and replication in the maintenance of genomic stability.
Cleavage factor I links transcription termination to DNA damage response and genome integrity maintenance in Saccharomyces cerevisiae.
No sample metadata fields
View Samplesthe nuclear pore complex (NPC) is emerging as an important mediator of cellular processes beyond molecule transport, including control of gene expression, replication and DNA repair.
The Nup84 complex coordinates the DNA damage response to warrant genome integrity.
No sample metadata fields
View SamplesWe report the presence of extensive, transcriptionally controlled oscillations in the C. elegans, developmental transcriptome. Furthermore, using ribosome profiling, we show that these oscillating transcripts are actively translated. Overall design: Examination of three timecourses that were collected over C. elegans development and analyzed by RNA-seq of mRNA libraries
Extensive oscillatory gene expression during C. elegans larval development.
Cell line, Subject
View SamplesWe report the presence of extensive, transcriptionally controlled oscillations in the C. elegans, developmental transcriptome. Furthermore, using ribosome profiling, we show that these oscillating transcripts are actively translated. Overall design: Examination of two timecourses that were collected over C. elegans development and analyzed by RNA-seq of "RiboMinus" libraries
Extensive oscillatory gene expression during C. elegans larval development.
Cell line, Subject
View Samples