We report the presence of extensive, transcriptionally controlled oscillations in the C. elegans, developmental transcriptome. Furthermore, using ribosome profiling, we show that these oscillating transcripts are actively translated. Overall design: Examination of three timecourses that were collected over C. elegans development and analyzed by RNA-seq of mRNA libraries
Extensive oscillatory gene expression during C. elegans larval development.
Cell line, Subject
View SamplesWe report the presence of extensive, transcriptionally controlled oscillations in the C. elegans, developmental transcriptome. Furthermore, using ribosome profiling, we show that these oscillating transcripts are actively translated. Overall design: Examination of two timecourses that were collected over C. elegans development and analyzed by RNA-seq of "RiboMinus" libraries
Extensive oscillatory gene expression during C. elegans larval development.
Cell line, Subject
View SamplesRelative contribution of sequence and structural features to the mRNA-binding of Argonaute/miRNA complexes and the degradation of miRNA targets
Relative contribution of sequence and structure features to the mRNA binding of Argonaute/EIF2C-miRNA complexes and the degradation of miRNA targets.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The mammalian TRIM-NHL protein TRIM71/LIN-41 is a repressor of mRNA function.
Specimen part, Cell line
View SamplesmicroRNAs (miRNAs) constitute a class of small non-coding RNAs (~22nt). They are thought to be generally stable with half-lives of many hours or even days. However, several miRNAs have been reported to decay rapidly in specific situations. In order to examine miRNA stability on a global scale, we quantify relative decay rates of miRNA in first larval stage C. elegans worms that are treated with a transcription inhibitor alpha-amanitin by deep sequencing. Several miRNAs including members of the miR-35 and miR-51 families exhibit accelerated decay. Moreover, biogenesis of miRNAs involves generation of a miRNA duplex intermediate consisting of the miRNA guide strand (miR) and the miRNA passenger strand (miR*). miR and miR* names were originally assigned based on the relative abundance of each strand, with the less abundant strand presumed to be inactive, and thus the miR*. However, subsequent research showed that at least individual miR*s can have biological activity. Our sequencing data reveal that miR*s, operationally defined on the basis of their relative abundance at time point t=1h, are substantially less stable than miRs. This would appear to support the notion that miR*s mainly constitute processing byproducts rather than a less abundant class of functional miRNAs. Overall design: Examination of microRNA decay rates in the first larval stage C. elegans worms.
Engineering of a conditional allele reveals multiple roles of XRN2 in Caenorhabditis elegans development and substrate specificity in microRNA turnover.
Specimen part, Cell line, Treatment, Subject
View SamplesWe identify mammalian TRIM71 as repressor of mRNAs that inhibits translation and affects mRNA stability.
The mammalian TRIM-NHL protein TRIM71/LIN-41 is a repressor of mRNA function.
Cell line
View SamplesWe identify mammalian TRIM71 as repressor of mRNAs that inhibits translation and affects mRNA stability. In this data set we compare the expression profile of mouse ES upon Trim71 KD versus that of the parental cells.
The mammalian TRIM-NHL protein TRIM71/LIN-41 is a repressor of mRNA function.
Specimen part
View SamplesWe perform RNA sequencing and ribosome profiling time course experiments to examine the effect of fully dysregulating all let-7 targets (in let-7(n2853) animals), partially dysregulating only LIN41 (in lin-41(xe11) animals) or fully dysregulating all let-7 targets while partially dysregulating LIN41 in lin-41(xe11); let-7(n2853) double mutant animals. We conclude that effects on gene expression in let-7 mutant animals are largely and quantitatively explained by dysregulation of LIN41 as its primary target. Furthermore, we identify direct LIN41 target genes regulated on the level of translation or mRNA abundance. Overall design: Total RNA-sequencing time course experiments sampling synchronized worm populations of different genetic backgrounds every two hours over the course of development from late L2/early L3 stage to late L4/Young adult stage.
LIN41 Post-transcriptionally Silences mRNAs by Two Distinct and Position-Dependent Mechanisms.
Cell line, Subject
View SamplesWe perform RNA sequencing and ribosome profiling time course experiments to examine the effect of fully dysregulating all let-7 targets (in let-7(n2853) animals), partially dysregulating only LIN41 (in lin-41(xe11) animals) or fully dysregulating all let-7 targets while partially dysregulating LIN41 in lin-41(xe11); let-7(n2853) double mutant animals. We conclude that effects on gene expression in let-7 mutant animals are largely and quantitatively explained by dysregulation of LIN41 as its primary target. Furthermore, we identify direct LIN41 target genes regulated on the level of translation or mRNA abundance. Overall design: Ribosome profiling time course experiments sampling synchronized worm populations of different genetic backgrounds every two hours over the course of development from late L2/early L3 stage to late L4/Young adult stage.
LIN41 Post-transcriptionally Silences mRNAs by Two Distinct and Position-Dependent Mechanisms.
Cell line, Subject
View SamplesRNA-binding proteins (RBPs) are critical regulators of gene expression and elucidating the interactions of RBPs with their RNA targets is necessary to understand how combinations of RBPs control transcriptome expression. The Quaking-related (QR) sub-family of STAR domain RBPs includes developmental regulators and tumor suppressors such as C. elegans GLD-1, which functions as a master regulator of germ line development. To understand how GLD-1 interacts with the transcriptome, we identified GLD-1 associated mRNAs by a ribonomic approach. The scale of GLD-1 mRNA interactions allowed us to determine rules governing GLD-1 target selection and to derive a predictive model where GLD-1 association with mRNA is based on the number and strength of 7-mer GLD-1 binding elements (GBEs) within UTRs. GLD-1/mRNA interactions were quantified, and predictions were verified both in vitro and in live animals, including by transplantation experiments where weak and strong GBEs imposed translational repression of increasing strength on a non-target mRNA.Importantly, this study provides a unique quantitative picture of how an RBP interacts with its mRNA targets. As combinatorial regulation by multiple RBPs is thought to regulate gene expression, quantification of RBP/mRNA interactions should be a way to predict and potentially modify biological outcomes of complex posttranscriptional regulatory networks, and our analysis suggests that such an approach is possible.
A quantitative RNA code for mRNA target selection by the germline fate determinant GLD-1.
Specimen part
View Samples