Photoreceptor disorders are collectively known as retinal degeneration (RD), and include retinitis pigmentosa (RP), cone-rod dystrophy and age related macular degeneration (AMD). These disorders are largely genetic in origin; individual mutations in any one of >200 genes cause RD, making mutation specific therapies prohibitively expensive. A better treatment plan, particularly for late stage disease, may involve stem cell transplants into the photoreceptor or ganglion cell layers of the retina. Stem cells from young mouse retinas can be transplanted, and can form photoreceptors in adult retinas. These cells can be grown in tissue culture, but can no longer form photoreceptors. We have used microarrays to investigate differences in gene expression between cultured retinal progenitor cells (RPCs) that have lost photoreceptor potential, postnatal day 1 (pn1) retinas and the postnatal day 5 (pn5) retinas that contain transplantable photoreceptors. We have also compared FACS sorted Rho-eGFP expressing rod photoreceptors from pn5 retinas with Rho-eGFP negative cells from the same retinas. We have identified over 300 genes upregulated in rod photoreceptor development in multiple comparisons, 37 of which have been previously identified as causative of retinal disease when mutated. It is anticipated that this research should bring us closer to growing photoreceptors in culture and therefore better treatments for RD. This dataset is also a resource for those seeking to identify novel retinopathy genes in RD patients.
Gene expression changes during retinal development and rod specification.
No sample metadata fields
View SamplesTranscriptional profile of PCSC spheres in SCM-1% KO (stem-like cells) vs adherent cultures in PCSC-Celprogen medium (differentiated-like cells)
Genomic profiling of tumor initiating prostatospheres.
Specimen part, Cell line
View SamplesLong-term dynamic compression enhanced the mechanical properties of MSC-seeded constructs only when loading was initiated after 21 days of chondrogenic differentiation. This study examined the molecular differences of chondrogenic MSCs compared to undifferentiated MSCs (TGF-beta vs no TGF-beta) and the effects of dynamic loading on MSC chondrogenesis (loading vs free-swelling).
Long-term dynamic loading improves the mechanical properties of chondrogenic mesenchymal stem cell-laden hydrogel.
Specimen part, Disease
View SamplesTo gain comprehensive insight into the OGT-dependent transcriptional program in Treg cells, we performed RNA-sequencing of isolated YFP+ Treg cells from Foxp3YFP-Cre/wtOgtwt/fl and healthy Foxp3YFP-Cre/wtOgtfl/fl females to avoid secondary changes in gene expression caused by inflammation. We were able to identify 269 differentially expressed genes including 154 downregulated and 115 upregulated with p values less than 0.01, OGT-deficient Treg cells had impaired suppressive function and attenuated IL2/STAT5 signaling pathway. Overall design: Examination of the function of OGT in Treg cells
The lineage stability and suppressive program of regulatory T cells require protein O-GlcNAcylation.
Specimen part, Cell line, Subject
View SamplesSpatial localization is a key determinant of cellular fate and behavior, but spatial RNA assays traditionally rely on staining for a limited number of RNA species. In contrast, single-cell RNA-seq allows for deep profiling of cellular gene expression, but established methods separate cells from their native spatial context. Here we present Seurat, a computational strategy to infer cellular localization by integrating single-cell RNA-seq data with in situ RNA patterns. We applied Seurat to spatially map 851 single cells from dissociated zebrafish (Danio rerio) embryos, inferring a transcriptome-wide map of spatial patterning. We confirmed Seurat’s accuracy using several experimental approaches, and used it to identify a set of archetypal expression patterns and spatial markers. Additionally, Seurat correctly localizes rare subpopulations, accurately mapping both spatially restricted and scattered groups. Seurat will be applicable to mapping cellular localization within complex patterned tissues in diverse systems. Overall design: We generated single-cell RNA-seq profiles from dissociated cells from developing zebrafish embryos (late blastula stage - 50% epiboly)
Spatial reconstruction of single-cell gene expression data.
Subject
View SamplesThe Affymetrix Human Gene 2.0 ST array was used to measure differential expression of RNA isolated from normal and Diamond Blackfan anemia (DBA) erythroid progenitors after ex vivo expansion of circulating, peripheral blood derived hematopoietic stem cells under erythroid growth conditions. The gene-level probe summaries reported in this series were computed using RMA as implemented in the Bioconductor package Oligo v1.36.1.
Molecular convergence in ex vivo models of Diamond-Blackfan anemia.
Specimen part
View SamplesSMART-seq2 was performed on single cells isolated from visually staged zebrafish embryos. Overall design: Samples were all sequenced in one batch. Some were generated with a 5'' UMI-tagged method, and others are full-length SMART-seq2.
Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis.
Subject
View SamplesWild-type zebrafish embryos were mechanically dissociated and profiled using Drop-seq Overall design: Drop-seq was performed on 28 groups of 20-40 visually staged, mechanically dissociated embryos. Samples were combined and sequenced in batches DS2-DS5.
Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis.
Subject
View SamplesWild-type and MZoep zebrafish embryos were mechanically dissociated and profiled using 10x Genomics pipeline. Overall design: 10x scRNA-seq was performed on visually staged, mechanically dissociated embryos. Samples were combined and sequenced in one batch.
Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis.
Subject
View SamplesDendritic cells (DC) arise from a diverse group of hematopoietic progenitors and have marked phenotypic and functional heterogeneity. We have found previously that activation of protein kinase C beta 2 (PRKCB2) by cytokines or phorbol esters drives normal human CD34(+) hematopoietic progenitors and myeloid leukemic blasts (KG1, K562 cell lines, and primary patient blasts) to differentiate into DC, but the genetic program triggered by PRKCB2 activation that results in DC differentiation is only beginning to be characterized. Of the cPKC isoforms, only PRKCB2 was consistently activated by DC differentiation-inducing stimuli in normal and leukemic progenitors. To examine early changes in gene expression following PRKCB2 activation, we employed the following cell lines: (1) the CD34(+) human acute myeloid leukemia derived cell line KG1, which undergoes DC differentiation following phorbol ester treatment; (2) KG1a, a spontaneously arising differentiation-resistant daughter cell line of KG1 that has lost PRKCB2 expression; (3) clones established from KG1a that stably express exogenous PRKCB2-GFP fusion proteins and are once again able to undergo DC differentiation (KG1a-PRKCB2-GFP Clone E9 and Clone E11). We examined changes in gene expression in these cells following treatment with the phorbol ester PMA (phorbol 12-myristate 13-acetate) for 2 hours. Since KG1 and KG1a differ in PRKCB2 expression but have similar expression of the other protein kinase C isoforms, this protocol will allow for the identification of genes regulated by PRKCB2 activation.
Tumor-induced STAT3 signaling in myeloid cells impairs dendritic cell generation by decreasing PKCβII abundance.
Sex, Age, Specimen part, Cell line, Treatment
View Samples