Mutations in CCAAT/enhancer binding protein alpha (CEBPA) are seen in 5-14% of acute myeloid leukemia (AML) and have been associated with a favorable clinical outcome. Most AMLs with CEBPA mutations simultaneously carry two mutations (CEBPAdouble-mut), usually biallelic, while single heterozygous mutations (CEBPAsingle-mut) are less frequently seen. Using denaturing high performance liquid chromatography and nucleotide sequencing we identified among a cohort of 598 newly diagnosed AMLs a subset of 41 CEBPA mutant cases, i.e. 28 CEBPAdouble-mut and 13 CEBPAsingle-mut cases. CEBPAdouble-mut associated with a unique gene expression profile as well as favorable overall and event-free survival, retained in multivariable analysis that included cytogenetic risk, FLT3-ITD and NPM1 mutation, white blood cell count and age. In contrast, CEBPAsingle-mut AMLs did not express a discriminating signature and could not be distinguished from wild type cases as regards clinical outcome. These results demonstrate significant underlying heterogeneity within CEBPA mutation positive AML with prognostic relevance.
Double CEBPA mutations, but not single CEBPA mutations, define a subgroup of acute myeloid leukemia with a distinctive gene expression profile that is uniquely associated with a favorable outcome.
Sex, Age, Specimen part, Disease, Disease stage
View SamplesThe pretreatment karyotype of leukemic blasts is currently the key determinant in therapy decision-making in acute myeloid leukemia (AML). However, approximately fifty percent of AML patients, often carrying a normal karyotype, are currently unclassifiable based these established methods. Gene expression profiling has proven to be valuable for risk stratification of AML.
Prediction of molecular subtypes in acute myeloid leukemia based on gene expression profiling.
Sex, Age, Specimen part, Disease, Disease stage
View SamplesFicolled AML-M0 sample gene expression profiles on Affymetrix HGU133Plus2.0 GeneChips. Acute myeloid leukemia (AML) classified as FAB-M0 is defined as a subtype with minimally differentiated morphology. Here we investigated by gene expression (GEP) profiling whether AML-M0 cases should be considered as one or more unique molecular subgroups that discriminates them from other AML patients. By applying GEP and subsequent unsupervised analysis of 35 AML-M0 samples and 253 previously reported AML cases, we demonstrate that AML-M0 cases express a unique signature. Hematological transcription regulators such as CEBPA, CEBPD, PU.1 and ETV6 and the differentiation associated gene MPO appeared strongly down-regulated, in line with the very primitive state of this type of leukemia. Moreover, AML M0 cases appeared to have a strong positive correlation with a previously defined immature AML subgroup with adverse prognosis. AML-M0 leukemias frequently carry loss-of-function RUNX-1 mutation and unsupervised analyses revealed a striking distinction between cases with and without mutations. RUNX1 mutant AML-M0 samples showed a distinct up-regulation of B-cell-related genes, e.g. members of the B-cell receptor complex, transcriptions regulators RUNX3, ETS2, IRF8 or PRDM1 and major histocompatibility complex class II genes. Importantly, expression of one single gene, i.e. BLNK, enabled prediction of RUNX1 mutations in AML-M0 with high accuracy. We propose that RUNX1 mutations in this subgroup of AML cause lineage infidelity, leading to aberrant co-expression of myeloid and B-lymphoid genes in the same cells.
Gene expression profiling of minimally differentiated acute myeloid leukemia: M0 is a distinct entity subdivided by RUNX1 mutation status.
Specimen part
View SamplesAcute Myeloid Leukemia (AML) is a heterogeneous disease from the molecular and biological standpoints, and even patients with a specific gene expression profile may present clinical and molecular heterogeneity. We studied the epigenetic profiles of a cohort of patients that shared a common gene expression profile but differed in that only half of them harbored mutations of the CEBPA locus, while the rest presented with silencing of this gene and co-expression of certain T cell markers. DNA methylation studies revealed that these two groups of patients could be readily segregated in an unsupervised fashion based on their DNA methylation profiles alone. Furthermore, CEBPA silencing was associated with the presence of an aberrant DNA hypermethylation signature, which was not present in the CEBPA mutant group. This aberrant hypermethylation occurred more frequently at sites within CpG islands. CEBPA silenced leukemias also displayed marked hypermethylation when compared with normal CD34+ hematopoietic cells, while CEBPA mutant cases showed only mild changes in DNA methylation when compared to these normal progenitors. Biologically, CEBPA silenced leukemias presented with a decreased response to myeloid growth factors in vitro.
Genome-wide epigenetic analysis delineates a biologically distinct immature acute leukemia with myeloid/T-lymphoid features.
No sample metadata fields
View SamplesA previously predictive CEBPA double mutant (CEBPAdm) signature was hampered by the recently reported CEBPA silenced AML cases that carry a similar gene expression profile (GEP). Two independent AML cohorts were used to train and evaluate the predictive value of the CEBPAdm signature in terms of sensitivity and specificity. A predictive signature was created, containing 25-probe sets by using a logistic regression model with Lasso regularization, which selects discriminative probe sets between the classes, CEBPAdm and all other AML cases, CEBPA wild type (CEBPAwt) and CEBPA single mutant (CEBPAsm). Subsequently, a classifier was trained on the entire HOVON-SAKK cohort based on a two-class approach; CEBPAdm versus all other cases (CEBPAwt and CEBPAsm). This trained classifier subsequently classified 16 candidate CEBPAdm cases in the AMLSG-cohort out of 154 AML cases. This approach showed perfect sensitivity and specificity (both 100%). In addition, we have performed a classification between CEBPAdm ,CEBPAsm, and CEBPAwt to infer if we were able to accurately classify CEBPAsm cases. We observed that all CEBPAsm cases were classified as CEBPAwt, thus CEBPAsm cases do not have a consistent gene expression pattern and are different from the CEBPAdm group.
Prognostic impact, concurrent genetic mutations, and gene expression features of AML with CEBPA mutations in a cohort of 1182 cytogenetically normal AML patients: further evidence for CEBPA double mutant AML as a distinctive disease entity.
No sample metadata fields
View SamplesEmbryonic CNS neurons can differentiate in culture and provide a model for maturation-related changes. A transcriptome profile over the course of maturation was perform to investigate the underlying molecular mechanism that drives maturation and its related changes such as developmental loss of intrinsic regenerative capacity. Overall design: Primary cortical neurons were excised from E18 rat embryos and were co-cultured with primary rat astrocytes from P0-2 rats. RNA were then extracted on day 1, 4, 8, 16, and 24 after plating.
Selective rab11 transport and the intrinsic regenerative ability of CNS axons.
No sample metadata fields
View Samples