Fetal mice (16 days gestation) were administered feline immunodeficiency virus (FIV)-based lentiviral viral particles containing the gene encoding GFP. Six liver tumors developed in three mice between the ages of 273 and 484 days, each mouse developed 2 tumors. These tumors and non-tumorous liver tissue from the same animals and animals that did not develop tumors and untransduced controls were harvested and microarrays were performed on total RNA extracted from these samples. We were interested in investigating the link between lentiviral integration and gene expression.
Transduction of fetal mice with a feline lentiviral vector induces liver tumors which exhibit an E2F activation signature.
Sex, Age, Specimen part
View SamplesDifferentiation events contribute to cellular heterogeneity within tumors and influence disease progression and response to therapy. Here we dissect the mechanisms controlling intratumoral heterogeneity within basal-like breast cancers. We show that cancer cells can transition between a differentiation state related to that of normal luminal progenitors and a state closer to that of mature luminal cells, and that this occurs through asymmetric cell divisions. The Polycomb factor EZH2 and the Notch pathway act to increase the rates of symmetric divisions that produce progenitor-like cells, while the FOXA1 transcription factor promotes asymmetric divisions that reduce the numbers of such cells. Through functional screening, we identified a group of regulators that control cancer cell differentiation state and the relative proportions of tumor cell subpopulations. Our findings highlight the regulation of asymmetric cell divisions as a mechanism controlling intratumoral heterogeneity, and identify molecular pathways that control breast cancer cellular composition. Overall design: Expression profiles of HCC70 cells expressing shRNAs targeting regulatory factors that influence basal-like cancer cell population composition
Regulation of Cellular Heterogeneity and Rates of Symmetric and Asymmetric Divisions in Triple-Negative Breast Cancer.
Cell line, Subject
View SamplesDifferentiation events contribute to cellular heterogeneity within tumors and influence disease progression and response to therapy. Here we dissect the mechanisms controlling intratumoral heterogeneity within basal-like breast cancers. We show that cancer cells can transition between a differentiation state related to that of normal luminal progenitors and a state closer to that of mature luminal cells, and that this occurs through asymmetric cell divisions. The Polycomb factor EZH2 and the Notch pathway act to increase the rates of symmetric divisions that produce progenitor-like cells, while the FOXA1 transcription factor promotes asymmetric divisions that reduce the numbers of such cells. Through functional screening, we identified a group of regulators that control cancer cell differentiation state and the relative proportions of tumor cell subpopulations. Our findings highlight the regulation of asymmetric cell divisions as a mechanism controlling intratumoral heterogeneity, and identify molecular pathways that control breast cancer cellular composition. Overall design: Expression profiles of three cell subpopulations – K18+, K18+K14+ and K18+Vim+ – sorted from the breast cancer cell lines HCC70 and MDA-MB-468
Regulation of Cellular Heterogeneity and Rates of Symmetric and Asymmetric Divisions in Triple-Negative Breast Cancer.
Cell line, Subject
View SamplesTranscriptome of beta-cells isolated from mice expressing p16ink4a and GFP transgenes and of control ß-cells isolated from mice expressing only the GFP transgene Overall design: RNAseq of murine beta-cells sorted based on GFP expression from three Ins-rtTA/tet-GFP/tet-p16ink4a mice and two control Ins-rtTA/tet-GFP mice following 10 days tet-mediated induction.
p16(Ink4a)-induced senescence of pancreatic beta cells enhances insulin secretion.
Specimen part, Subject
View SamplesThe rapid transit from hypoxia to normoxia in the lung that follows the first breath in newborn mice coincides with alveolar macrophage (AM) differentiation. However, whether sensing of oxygen affects AM maturation and function has not been previously explored. We have generated mice whose AMs show a deficient ability to sense oxygen after birth by deleting Vhl, a negative regulator of HIF transcription factors, in the CD11c compartment (CD11c?Vhl mice). VHL-deficient AMs show an immature-like phenotype and an impaired self-renewal capacity in vivo that persists upon culture ex vivo. VHL-deficient phenotype is intrinsic in AMs derived from monocyte precursors in mixed bone marrow chimeras. Moreover, unlike control Vhlfl/fl, AMs from CD11c?Vhl mice do not revert pulmonary alveolar proteinosis when transplanted into Csf2rb-/- mice, demonstrating that VHL contributes to AM-mediated surfactant clearance. Thus, our results suggest that optimal AM terminal differentiation, self-renewal, and homeostatic function requires their oxygen sensing capacity. Overall design: BAL AMs were pooled from 5-7 age and sex-matched mice per genotype and further purified by positive selection with anti-CD11c-microbeads (Miltenyi Biotec), following manufacturer's instructions. Cell lysis was performed with buffer RLT (Qiagen), containing 10µ/ml ß-mercaptoethanol and RNA was isolated with RNeasy Plus Mini Kit (Qiagen). RNA concentration and integrity were determined with an Agilent 2100 Bioanalyzer (Caliper Life Science). Samples with RNA integrity values > 8 were further processed. A total of 3 pools per genotype were used for RNA Seq.
Von Hippel-Lindau Protein Is Required for Optimal Alveolar Macrophage Terminal Differentiation, Self-Renewal, and Function.
Treatment, Subject
View SamplesRheumatoid arthritis is an autoimmune disease in which joint inflammation lead to progressive cartilage and bone destruction. Matrix metalloproteinases (MMP) implicated in homeostasis of extracellular matrix (ECM) play a central role in cartilage degradation. The aim of this study was to investigate the role of MMP-8 (collagenase-2) suppression in the K/BxN serum-transfer arthritis model.
Matrix metalloproteinase-8 deficiency increases joint inflammation and bone erosion in the K/BxN serum-transfer arthritis model.
Specimen part
View SamplesSpheroids are 3D multi-cell aggregates formed in non-addherent culture conditions. In ovarian cancer (OC), they serve as a vehicle for cancer cell dissemination in the peritoneal cavity. We investigated genes and networks upregulated in three dimensional (3D) versus two-dimensional (2D) culture conditions by Affymetrix gene expression profiling and identified ALDH1A1, a cancer stem cell marker as being upregulated in OC spheroids. Network analysis confirmed ALDH1A1 upregulation in spheroids in direct connection with elements of the -catenin pathway. A parallel increase in the expression levels of -catenin and ALDH1A1 was demonstrated in spheroids vs. monolayers an in successive spheroid generations by using OC cell liness and primary OC cells. The percentage of Aldefluor positive cells was significantly higher in spheroids vs. monolayers in IGROV1, A2780, SKOV3, and primary OC cells. B-catenin knock-down decreased ALDH1A1 expression and chromatin immunoprecipitation demonstrated that -catenin directly binds to the ALDH1A1 promoter. Both siRNA mediated -catenin knock-down and a novel ALDH1A1 small molecule enzymatic inhibitor described here for the first time, decreased the number of OC spheroids (p<0.001) and cell viability. These data strongly support the role of -catenin regulated ALDH1A1 in the maintenance of OC spheroids and of a stem cell phenotype and propose new ALDH1A1 inhibitors targeting this cell population.
β-Catenin-regulated ALDH1A1 is a target in ovarian cancer spheroids.
Specimen part
View SamplesRegulation of cell-cell junction formation and regulation of cell migration were enriched among EMT (Epithelial-Mesenchymal Transition)-associated alternatively splicing events. Our analysis suggested that most EMT-associated alternative splicing events are regulated by one or more members of the RBFOX, MBNL, CELF, hnRNP or ESRP classes of splicing factors. The EMT alternative splicing signature was confirmed in human breast cancer cell lines, which could be classified into basal and luminal subtypes based exclusively on their EMTassociated splicing pattern. Expression of EMT-associated alternative mRNA transcripts was also observed in primary breast cancer samples, indicating that EMT-dependent splicing changes occur commonly in human tumors. The functional significance of EMT-associated alternative splicing was tested by expression of the epithelial-specific splicing factor ESRP1 or depletion of RBFOX2 in mesenchymal cells, both of which elicited significant changes in cell morphology and motility towards an epithelial phenotype, suggesting that splicing regulation alone can drive critical aspects of EMT-associated phenotypic changes. The molecular description obtained here may aid in the development of new diagnostic and prognostic markers for analysis of breast cancer progression. Overall design: Examination of transcriptomes of HMLE/Twist-ER before and after induction of EMT by tamoxifen
An EMT-driven alternative splicing program occurs in human breast cancer and modulates cellular phenotype.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Integrative epigenome-wide analysis demonstrates that DNA methylation may mediate genetic risk in inflammatory bowel disease.
Sex, Age, Specimen part, Subject
View SamplesEpigenetic alterations may provide important insights into gene-environment interaction in inflammatory bowel disease (IBD). Here we observe epigenome-wide DNA methylation differences in 240 newly-diagnosed IBD cases and 190 controls. These include 439 differentially methylated positions (DMPs) and 5 differentially methylated regions (DMRs), which we study in detail using whole genome bisulphite sequencing. We replicate the top DMP (RPS6KA2) and DMRs (VMP1, ITGB2, TXK) in an independent cohort.
Integrative epigenome-wide analysis demonstrates that DNA methylation may mediate genetic risk in inflammatory bowel disease.
Sex, Age, Specimen part
View Samples