Understanding how the expression of transcription factor (TF) genes is modulated is essential for reconstructing gene regulatory networks. There is increasing evidence that sequences other than upstream noncoding can contribute to modulating gene expression, but how frequently they do so remains unclear. Here, we investigated the regulation of TFs expressed in a tissue-enriched manner in Arabidopsis roots. For 61 TFs, we created GFP reporter constructs driven by each TF's upstream noncoding sequence (including the 5'UTR) fused to the GFP reporter gene alone or together with the TF's coding sequence. We compared the visually detectable GFP patterns with endogenous mRNA expression patterns, as defined by a genome-wide microarray root expression map.
Transcriptional and posttranscriptional regulation of transcription factor expression in Arabidopsis roots.
Age, Specimen part
View SamplesTREM-2 has been described to be a phagocytic receptor. We assessed the influence of TREM-2 on gene expression in alveolar macrophages (AM)
The triggering receptor expressed on myeloid cells 2 inhibits complement component 1q effector mechanisms and exerts detrimental effects during pneumococcal pneumonia.
Specimen part
View SamplesCytoplasmic DNA triggers the activation of the innate immune system. While downstream signaling components have been characterized, the DNA sensing components remain largely elusive. We performed a systematic proteomics screen for proteins that associate with DNA, traversed to a screen for IFN--induced transcripts. We identified DSIRE (DNA sensor for the IL-1 response, previously called AIM2) as a candidate cytoplasmic sensor. DSIRE showed a marked selectivity for double-stranded DNA. DSIRE can recruit the inflammasome adaptor ASC and gets redistributed to ASC speckles upon coexpression of ASC. RNAi-mediated reduction of DSIRE expression led to an impairment in IL-1 maturation. Reconstitution of unresponsive cells with DSIRE, ASC, caspase 1 and IL-1 showed that DSIRE is sufficient for inflammasome activation. Overall, our data strongly suggest that DSIRE is a cytoplasmic DNA sensor for the inflammasome.
An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome.
No sample metadata fields
View SamplesMicrobial functions in the host physiology are a result of co-evolution between microbial communities and their hosts. Here we show that cold exposure leads to marked shift of the microbiota composition, referred to as cold microbiota. Transplantation of the cold microbiota to germ-free mice is sufficient to increase the insulin sensitivity of the host, and enable complete tolerance to cold partly by promoting the white fat browning, leading to increased energy expenditure and fat loss. During prolonged cold however, the body weight loss is attenuated, caused by adaptive mechanisms maximising caloric uptake and increasing intestinal, villi and microvilli lengths. This increased absorptive surface is promoted by the cold microbiota - effect that can be diminished by co-transplanting the most downregulated bacterial strain from the Verrucomicrobia phylum, Akkermansia muciniphila, during the cold microbiota transfer. Our results demonstrate the microbiota as a key factor orchestrating the overall energy homeostasis during increased demand. Overall design: Mice were kept 30 days at room temperature or at 6C, 2 per cage, under SPF conditions, with or without administration of antibiotic coctail in drinking water (whole microbiota depletion). Fasted 5h before sacrifice. Segments of proximal jejunum were isoated, flushed gently with PBS and frozen. Each of 12 samples is a pool of two biological replicates (2 biological replicates of the same condition combined into one sample)
Gut Microbiota Orchestrates Energy Homeostasis during Cold.
Specimen part, Cell line, Subject
View SamplesThe cellular response to replication stress requires the DNA-damage responsive kinase ATM and its co-factor ATMIN, however the roles of this signaling pathway following replication stress are unclear. RNA-seq and subsequent differential expression analyses were utilized to identify the functions of ATM and ATMIN in response to replication stress induced by Aphidcolin (APH). Overall design: Mouse Embryonic Fibroblasts (MEFs) deleted for ATM or ATMIN were treated with 1µM APH or DMSO as a control. Two different wild-type MEF cell lines (wtATM, wtATMIN) served as controls. RNA-seq was performed in duplicates, in a total of 32 samples, with an average of 31.1M aligned readsobtained per group,with 15.5M reads obtained per replicate.
A Comprehensive Analysis of the Dynamic Response to Aphidicolin-Mediated Replication Stress Uncovers Targets for ATM and ATMIN.
Specimen part, Treatment, Subject
View SamplesBreast cancer is genetically heterogeneous, and recent studies have underlined a prominent contribution of epigenetics to the development of this disease. To uncover new synthetic lethalities with known breast cancer oncogenes, we screened an epigenome-focused short hairpin RNA library on a panel of engineered breast epithelial cell lines. Here we report a selective interaction between the NOTCH1 signaling pathway and the SUMOylation cascade. Knockdown of the E2-conjugating enzyme UBC9 (UBE2I) as well as inhibition of the E1-activating complex SAE1/UBA2 using ginkgolic acid impairs the growth of NOTCH1-activated breast epithelial cells. We show that upon inhibition of SUMOylation NOTCH1-activated cells proceed slower through the cell cycle and ultimately enter apoptosis. Mechanistically, activation of NOTCH1 signaling depletes the pool of unconjugated small ubiquitin-like modifier 1 (SUMO1) and SUMO2/3 leading to increased sensitivity to perturbation of the SUMOylation cascade. Depletion of unconjugated SUMO correlates with sensitivity to inhibition of SUMOylation also in patient-derived breast cancer cell lines with constitutive NOTCH pathway activation. Our investigation suggests that SUMOylation cascade inhibitors should be further explored as targeted treatment for NOTCH-driven breast cancer. Overall design: We treated MCF10A and NOTCH1 cells with either DMSO or ginkgolic acid 30 uM for 3 days. Two replicates have been analysed for each condition.
NOTCH1 activation in breast cancer confers sensitivity to inhibition of SUMOylation.
No sample metadata fields
View SamplesA basal (MDAMB468) and luminal (ZR75-1) cell line were treated with DMSO or PKC412 for 6h Overall design: 2 DMSO and 3 PKC412 treated samples for each cell line
Targeting a cell state common to triple-negative breast cancers.
No sample metadata fields
View SamplesHere we analyse single cell transcriptome profiles of EZH2-deficient human embroynic stem cells Overall design: Single cell transcriptome (mRNA-Seq) from Ezh2-/- (Null) and EZH2+/+ (WT) human ESC
Deletion of the Polycomb-Group Protein EZH2 Leads to Compromised Self-Renewal and Differentiation Defects in Human Embryonic Stem Cells.
Specimen part, Subject
View SamplesThe homeobox containing gene Arx is expressed during ventral telencephalon development and it is required for correct GABAergic interneuron tangential migration from the ganglionic eminences to the olfactory bulbs, cerebral cortex and striatum. Its human ortholog is associated with a variety of neurological clinical manifestations whose syntoms are compatible with a loss of cortical interneurons and altered basal ganglia related-activities in humans. Herein, we reported the identification by global expression profiling of a group of genes whose expression is consistently altered in Arx mutant ganglionic eminences. Following analysis revealed the striking ectopic expression in the ganglionic eminences of a number of genes normally not, or only marginally, expressed in the ventral telencephalon. Among them, we functionally analyzed Ebf3, whose ectopic expression in ventral telencephalon is preventingneuronal tangential migration. Further, we showed that Arx is sufficient to repress Ebf3 endogenous expression and that its silencing in Arx mutant tissue might marginally rescue tangential cell movements. Together, these data provide an initial analysis of the molecular pathways regulated by Arx and how their networking might regulate those specific cellular processes during telencephalon development strongly altered by loss of Arx.
Arx acts as a regional key selector gene in the ventral telencephalon mainly through its transcriptional repression activity.
No sample metadata fields
View SamplesLipid rafts are cholesterol-rich cell signaling platforms and their physiological role can be explored by cholesterol depletion. To dress a global picture of transcriptional changes ongoing after lipid raft disruption, we performed whole-genome expression profiling in epidermal keratinocytes, a cell type which synthesizes its cholesterol in situ.
Transcriptional profiling after lipid raft disruption in keratinocytes identifies critical mediators of atopic dermatitis pathways.
Specimen part, Time
View Samples