The WWOX gene spans chromosomal fragile site FRA16D, a region of DNA instability in cancer. While WWOX has some tumor suppressor characteristics, its normal role and functional contribution to cancer are unclear. Drosophila homozygous Wwox mutants are viable with no discernable phenotype. Drosophila Wwox interactors, identified by proteomics and micro-array analyses, mainly have roles in aerobic metabolism. Functional relationships between Wwox and either isocitrate dehydrogenase (IDH) or superoxide dismutase 1 (Sod1) were confirmed by phenotype modification, including Sod1 crinkled-wing, indicative of oxidative stress response. Endogenous reactive oxygen species levels reflect Wwox levels in Drosophila. WWOX mRNA levels in Drosophila and human cells correlate with IDH and Sod1 levels. Wwox therefore contributes to pathways involving glucose metabolism and oxidative stress response.
Drosophila orthologue of WWOX, the chromosomal fragile site FRA16D tumour suppressor gene, functions in aerobic metabolism and regulates reactive oxygen species.
Specimen part
View SamplesRight ventricular samples were serially acquired during surgical repair of ventricular septal defect. Expression profiling revealed three patterns of gene expression: (1) increased expression above control levels within one hour of cardioplegic arrest, with further amplification during early reperfusion; (2) increased expression limited to the reperfusion phase; and (3) reduced expression during reperfusion.
Early gene expression profiles during intraoperative myocardial ischemia-reperfusion in cardiac surgery.
No sample metadata fields
View SamplesNon-nutritive sweeteners like sucralose are consumed by billions of people. While animal and human studies have demonstrated a link between synthetic sweetener consumption and metabolic dysregulation, the mechanisms responsible remain unknown. Here we use a diet supplemented with sucralose to investigate the long-term effects of sweet/energy imbalance. In flies, chronic sweet/energy imbalance promoted hyperactivity, insomnia, glucose intolerance, enhanced sweet taste perception and a sustained increase in food and calories consumed, effects that are reversed upon sucralose removal. Mechanistically, this response was mapped to the ancient insulin, catecholamine, and NPF/NPY systems and the energy sensor AMPK, which together comprise a novel neuronal starvation response pathway. Interestingly, chronic sweet/energy imbalance promoted increased food intake in mammals as well, and this also occurs through an NPY-dependent mechanism. Together our data show that chronic consumption of a sweet/energy imbalanced diet triggers a conserved neuronal fasting response and increases the motivation to eat. Overall design: RNA-seq on Drosophila head samples fed control and sucralose diet
Sucralose Promotes Food Intake through NPY and a Neuronal Fasting Response.
Specimen part, Cell line, Subject
View SamplesThe 6-hydroxydopamine (6OHDA) rat model of parkinsonism is among the first, and most commonly used, animal models of Parkinsons disease. It provides insight into the compensatory changes that occur in the brain after dopamine (DA) neuron degeneration. In order to better define the consequences of substantia nigra DA neuron loss on the neural and glial populations during and following nigrostriatal degeneration, tissue was collected and evaluated from the substantia nigra of 6OHDA or vehicle treated, or nave rats at 1, 2, 4, 6 & 16 weeks.
The longitudinal transcriptomic response of the substantia nigra to intrastriatal 6-hydroxydopamine reveals significant upregulation of regeneration-associated genes.
Sex, Specimen part
View SamplesThe restoration of catalytic activity to mutant enzymes by small molecules is well-established for in vitro systems. Here we show that the protein tyrosine kinase Src R388A mutant can be rescued in live cells using the small molecule imidazole. Cellular rescue of a v-Src homolog was rapid and reversible and conferred predicted oncogenic properties. Using chemical rescue in combination with mass spectrometry, six known Src kinase substrates were confirmed, and several new protein targets identified. Chemical rescue data suggests that c-Src is active under basal conditions. Rescue of R388A c-Src also allowed contributions of Src to the MAP kinase pathway to be clarified. This chemical rescue approach is likely to be of broad utility in cell signaling.
Chemical rescue of a mutant enzyme in living cells.
No sample metadata fields
View SamplesmRNA expression in the spinal cords of the G93A-SOD1 familial ALS transgenic mouse model was compared to that in nontransgenic (Normal mouse) and transgenic mice expressing wild-type (WT)SOD1. Gene Ontology (GO)analysis was used to characterize differences in expression between G93A-SOD1 mouse and nontransgenic mouse spinal cord. Changes in multiple GO categories were found. Many of these were associated with subsystems involving cell-cell communication and intracellular signal transduction. Expression profiles of mice expressing WT-SOD1 did not differ from nontransgenic mice. In contrast, protein profiling using proteomics technology indicated changes in mitochondrial protein expression in the G93A-SOD1 mouse spinal cord that were not found in the mRNA expression analysis.
Informatics-assisted protein profiling in a transgenic mouse model of amyotrophic lateral sclerosis.
Age
View SamplesWe used microarrays to assess gene expression differences in the hippocampus between FoxO6 mutant and wild-type siblings before (basal) or after novel object learning.
FoxO6 regulates memory consolidation and synaptic function.
Sex, Time
View SamplesAndrogen receptor (AR) signaling is a distinctive feature of prostate cancer (PC) and represents the major therapeutic target for the treatment of metastatic disease. Though highly effective, AR antagonism has the potential to generate tumors that bypass a functional requirement for AR activity. We show here that a phenotypic shift has occurred in metastatic PCs with the emer-gence of a double-negative AR-null neuroendocrine-null phenotype that is notable for MAPK and FGF pathway activity. To identify mechanisms capable of sustaining PC survival, we gener-ated a model system designated AR program-independent prostate cancer (APIPC) which re-sists AR-targeted therapeutics, lacks neuroendocrine features, expresses high levels of FGF8 and the ID1 oncogene, and activates MAPK signaling. Pharmacological blockade of MAPK or FGF signaling inhibited APIPC tumor growth, supporting FGF/MAPK as a therapeutic avenue for treating AR-null PC. Overall design: RNA sequencing of human prostate tumor cell lines using the Illumina TruSeq Library prep and sequenced on Illumina HiSeq 2500.
Androgen Receptor Pathway-Independent Prostate Cancer Is Sustained through FGF Signaling.
Sex, Specimen part, Cell line, Subject
View SamplesGene expression profiling was carried out on peripheral blood CD2+ leukocytes from 29 children with asthma. The primary research question is whether gene expression differs in individuals from high socioeconomic status environments vs low socioeconomic status environments.
Genome-wide transcriptional profiling linked to social class in asthma.
No sample metadata fields
View SamplesGene expression profiling was carried out on peripheral blood leukocytes from 14 healthy older adults. The primary research question is whether gene expression differs in individuals experiencing chronically high levels of social isolation (by UCLA Loneliness Scale) vs chronically low levels of social isolation.
Social regulation of gene expression in human leukocytes.
No sample metadata fields
View Samples