Trans-splicing is a post-transcriptional event that joins exons from separate pre-mRNAs. Detection of trans-splicing is usually severely hampered by experimental artifacts and genetic rearrangements. Here, we develop a new computational pipeline, TSscan, which integrates different types of high-throughput long-/short-read transcriptome sequencing of different human embryonic stem cell (hESC) lines to effectively minimize false positives while detecting trans-splicing. Combining TSscan screening with multiple experimental validation steps revealed that most chimeric RNA products were platform-dependent experimental artifacts of RNA sequencing. We successfully identified and confirmed four trans-spliced RNAs, including the first reported trans-spliced large intergenic noncoding RNA ("tsRMST"). We showed that these trans-spliced RNAs were all highly expressed in human pluripotent stem cells and differentially expressed during hESC differentiation. Our results further indicated that tsRMST can contribute to pluripotency maintenance of hESCs by suppressing lineage-specific gene expression through the recruitment of NANOG and the PRC2 complex factor, SUZ12. Taken together, our findings provide important insights into the role of trans-splicing in pluripotency maintenance of hESCs and help to facilitate future studies into trans-splicing, opening up this important but understudied class of post-transcriptional events for comprehensive characterization
Integrative transcriptome sequencing identifies trans-splicing events with important roles in human embryonic stem cell pluripotency.
Specimen part
View SamplesWe performed knockdown of circARID1A, overexpression of circARID1A and overexpression of miR-204-3p in ReNcell, independently. The 22,480 gene expression changes were examined by microarray analysis.
Genome-wide, integrative analysis of circular RNA dysregulation and the corresponding circular RNA-microRNA-mRNA regulatory axes in autism.
Cell line
View SamplesThe underlying change of gene network expression of Guillain-Barre syndrome (GBS) remains elusive. We sought to identify GBS-associated gene networks and signalling pathways by analyzing the transcriptional profile of leukocytes in the patients with GBS.
Identification of gene networks and pathways associated with Guillain-Barré syndrome.
Sex, Age, Specimen part, Race
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Activation of GCN2 kinase by ribosome stalling links translation elongation with translation initiation.
Age
View SamplesRibosome stalling during translation has recently been shown to cause neurodegeneration, yet the signaling pathways triggered by stalled elongation complexes are unknown. To investigate these pathways we analyzed the brain of B6J-nmf205-/- mice in which neuronal elongation complexes are stalled at AGA codons due to deficiencies in a tRNA Arg(UCU) tRNA and GTPBP2, a mammalian ribosome rescue factor. Increased levels of phosphorylation of eIF2 (Ser51) were detected prior to neurodegeneration in these mice and transcriptome analysis demonstrated activation of ATF4, a key transcription factor in the integrated stress response (ISR) pathway. Genetic experiments showed that this pathway was activated by the eIF2 kinase, GCN2, in an apparent deacylated tRNA-independent fashion. Further we found that the ISR attenuates neurodegeneration in B6J-nmf205-/- mice, underscoring the importance of cellular and stress context on the outcome of activation of this pathway. These results demonstrate the critical interplay between translation elongation and initiation in regulating neuron survival during cellular stress.
Activation of GCN2 kinase by ribosome stalling links translation elongation with translation initiation.
No sample metadata fields
View SamplesTo identify sex-based differences in gene pathways affected by endgoenous genomic instaiblity resulting in embryonic death, total RNA from E13.5 placentas was isolated for RNAseq. Placentas from male and female embryos from wild-type matings and Mcm4^C3/C3 homozygous matings were used as references. Male and female placentas derived from embryos of the genotype : Mcm4^C3/C3 Mcm2^Gt/+ from either male Mcm4^C3/+ Mcm2^Gt/+ crossed to female Mcm4^C3/C3 or male Mcm4^C3/C3 crossed to female Mcm4^C3/+ Mcm2^Gt/+ were the experimental samples. Overall design: Total RNA was isolated from E13.5 placentas and subjected to directional RNAseq to identify sex-based transciptome differences.
Female-biased embryonic death from inflammation induced by genomic instability.
Specimen part, Cell line, Subject
View SamplesWe compared mRNA profiles of isolated glomeruli versus sorted podocytes between diabetic and control mice. IRG mice crossed with eNOS-/- mice were further bred with podocin-rTTA and TetON-Cre mice to permanently label podocytes before the diabetic injury. Diabetes was induced by injection of streptozotocin. mRNA profiles of isolated glomeruli and sorted podocytes from diabetic and control mice at 10 weeks after induction of diabetes were examined. Consistent with the previous reports, expression of podocyte-specific markers in the glomeruli were down-regulated in the diabetic mice compared to controls. However, these differences disappeared when mRNA levels were corrected for podocyte number per glomerulus. Interestingly, the expression of these markers was not altered in sorted podocytes from diabetic mice, suggesting that the reduced expression of podocyte markers in isolated glomeruli is likely a secondary effect of reduced podocyte number, rather than the loss of differentiation markers. Analysis of the differentially expressed genes in diabetic mice also revealed distinct up-regulated pathways in the glomeruli (mitochondrial function and oxidative stress) and podocytes (actin organization). In conclusion, our data suggest that podocyte-specific gene expression in transcriptome obtained from the whole glomeruli may not represent those of podocytes in the diabetic kidney. Overall design: We compared mRNA profiles of isolated glomeruli versus sorted podocytes between diabetic and control mice.
Comparison of Glomerular and Podocyte mRNA Profiles in Streptozotocin-Induced Diabetes.
Specimen part, Disease, Disease stage, Cell line, Subject
View SamplesMetastasis is a major cause leading to mortality for lung cancer patients. We identified YWHAZ as a potential metastasis-promoting candidate and found that overexpression of YWHAZ promotes lung cancer cell proliferation, anchorage-independent growth, migration, and invasion in vitro, as well as tumorigenesis and metastasis in vivo. It not only increases cell protrusions and branchings but also induces epithelial-mesenchymal transition. Most importantly, YWHAZ protein could prevent ]-catenin from ubiquitination via its association with ]-catenin and enhance slug transcriptional activity which is regulated by ]-catenin/TCF signaling pathway. Moreover, YWHAZ expression was higher in tumors than in adjacent normal tissues in 63 Non-small-cell lung cancer (NSCLC) patients. NSCLC patients with high YWHAZ expressing tumors had shorter overall survival than those with low-expressing tumors. We conclude that YWHAZ play a critical role in promoting NSCLC metastasis.
A novel function of YWHAZ/β-catenin axis in promoting epithelial-mesenchymal transition and lung cancer metastasis.
Cell line
View SamplesThese paired HCC and non-tumorous liver tissues were used to determine highly dfferentially expressed genes in HCC and non-tumorous liver tissue.
Plasmalemmal Vesicle Associated Protein (PLVAP) as a therapeutic target for treatment of hepatocellular carcinoma.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Integrated analyses of copy number variations and gene expression in lung adenocarcinoma.
Sex, Age, Specimen part
View Samples