Murine NK cells were compared at rest and following 24 hours of IL-15 stimulation for their mRNA expression profiles on the Affymetrix MOE430_2 microarray platform. Additional comparators included resting bulk splenocytes.
Acquisition of murine NK cell cytotoxicity requires the translation of a pre-existing pool of granzyme B and perforin mRNAs.
No sample metadata fields
View SamplesThe transcription factor MIST1 is required for final maturation of secretory cells of diverse tissues, including gastric digestive-enzyme secreting zymogenic (chief) cells (ZCs). Here, we show that MIST1 directly activates RAB26, RAB3D and several other genes.
RAB26 and RAB3D are direct transcriptional targets of MIST1 that regulate exocrine granule maturation.
Specimen part, Cell line
View SamplesThe objective is to identify genes that are differentially expressed following the introduction of DNA double strand breaks (DSBs) by the Rag proteins in murine pre-B cells. Cells lacking Artemis are used since the Rag-induced DSBs will not be repaired and, thus, will provide a continuous stimulus to the cell. Cells lacking Artemis and Atm are used to determine which gene expression changes depend on Atm and cells lacking Artemis that express an I kappa B alpha dominant negative are used to determine which gene expression changes depend on NFkB.
DNA double-strand breaks activate a multi-functional genetic program in developing lymphocytes.
No sample metadata fields
View SamplesExperimental Design
Quorum-sensing antagonistic activities of azithromycin in Pseudomonas aeruginosa PAO1: a global approach.
No sample metadata fields
View SamplesIn zebrafish, parental exposure to ionizing radiation has been associated with effects in offspring, such as increased DNA damage and reactive oxygen species. Here, we assessed short (one month) and long term effects (one year) on gene expression in embryonic offspring (5.5 hours post fertilization) from zebrafish exposed during gametogenesis to gamma radiation (8.7 or 53 mGy/h for 27 days, total dose 5.2 or 31 Gy). One month after exposure, a global change in gene expression was observed in offspring from the 53 mGy/h group, followed by embryonic death at late gastrula, whereas offspring from the 8.7 mGy/h group was unaffected. One year after exposure, embryos from the 8.7 mGy/h group exhibited 2455(61.8% downregulated) differentially expressed genes. Overlaps in differentially expressed genes and enriched biological pathways were evident between the 53 mGy/h group one month and 8.7 mGy/h one year after exposure, which could be linked to effects in adults and offspring, such as DNA damage and lipid peroxidation. Interestingly, pathways between the two groups were oppositely regulated. Our results indicate latent effects following ionizing radiation exposure in parents that can be transmitted to offspring and warrants monitoring effects over subsequent generations. Overall design: One month after exposure, mRNA from F1 5.5 hpf embryos from parents exposed to 8.7 and 53 mGy/h gamma radiation during gametogenesis was sequenced on the Illumina 4000 platform with three replicas per treatment. One year after exposure, mRNA from F1 embryos from the same parents exposed to 8.7 mGy/h was sequenced with three biological replicates. In both cases, F1 embryos from non-exposed parents were used as control and mRNA sequenced in triplicates, taken at the same time points as the exposed samples.
Parental exposure to gamma radiation causes progressively altered transcriptomes linked to adverse effects in zebrafish offspring.
No sample metadata fields
View SamplesStudies have shown that vitamin D can enhance glucose-stimulated insulin secretion (GSIS) and change the expression of genes in pancreatic β-cells. Still the mechanisms linking vitamin D and GSIS are unknown.
Vitamin D metabolites influence expression of genes concerning cellular viability and function in insulin producing β-cells (INS1E).
Specimen part, Cell line, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Epigenetic Regulation of ZBTB18 Promotes Glioblastoma Progression.
Cell line
View SamplesThe transcriptional repressor ZBTB18 was overexpressed in the brain tumor xenoline JX6 by lentiviral transduction. Three independent transduction were performed (biological replicates) and analyzed by gene expression aray. Gene set enrichemnt analysis (GSEA) showed changes in the expression of mesenchymal signature. A subset of genes was further valiadted by qPCR. These results indicate a role of ZBTB18 as repressor of mesenchymal genes in Glioblastoma.
Epigenetic Regulation of ZBTB18 Promotes Glioblastoma Progression.
Cell line
View SamplesThe transcriptional repressor ZBTB18 was overexpressed in the brain tumor stem cell-like BTSC233 by lentiviral transduction. Three independent transduction were performed (biological replicates) and analyzed by gene expression aray. Gene set enrichemnt analysis (GSEA) showed changes in the expression of mesenchymal signature. A subset of genes was further valiadted by qPCR. These results indicate a role of ZBTB18 as repressor of mesenchymal genes in Glioblastoma.
Epigenetic Regulation of ZBTB18 Promotes Glioblastoma Progression.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Exploiting microRNA and mRNA profiles generated in vitro from carcinogen-exposed primary mouse hepatocytes for predicting in vivo genotoxicity and carcinogenicity.
Specimen part, Compound
View Samples