The unique metabolic profile of most cancers (aerobic glycolysis) might confer apoptosis-resistance and be therapeutically targeted. Compared to normal cells, several human cancers have high mitochondrial membrane potential and low expression of the K+ channel Kv1.5, both contributing to apoptosis-resistance. Dichloroacetate (DCA), an inhibitor of the mitochondrial pyruvate dehydrogenase kinase (PDK), shifts metabolism from glycolysis to glucose oxidation, decreases mitochondrial membrane potential, increases mitochondrial-H2O2 and activates Kv channels in all cancer, but not normal cells; DCA upregulates Kv1.5 by an NFAT1-dependent mechanism. DCA induces apoptosis, decreases proliferation and tumor growth in vitro and in vivo, without apparent toxicity. Molecular inhibition of PDK2 by siRNA mimics DCA. The mitochondria-NFAT-Kv axis and PDK are important therapeutic targets in cancer; the orally available DCA is a novel selective anticancer agent.
A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth.
No sample metadata fields
View SamplesThe present research is devoted to the identification of gene(s) severely affected by EMD mutations, leading to striated muscle laminopathies and more specifically the cardiomyopathy. For this purpose, we developped a large-scale gene expression approach on heart and skeletal tissues from Emd KO mouse model.
Activation of MAPK in hearts of EMD null mice: similarities between mouse models of X-linked and autosomal dominant Emery Dreifuss muscular dystrophy.
No sample metadata fields
View SamplesDisruption of peripheral circadian rhyme pathways dominantly leads to metabolic disorders. Studies on circadian rhythm proteins in the heart indicated a role for Clock or Per2 in cardiac metabolism. In fact, Per2-/- mice have larger infarct sizes with a deficient lactate production during myocardial ischemia. To test the hypothesis that cardiac Per2 represents an important regulator of cardiac metabolism during myocardial ischemia, we performed lactate measurements during reperfusion in Per1-/-, Per2-/- or wildtype mice followed by gene array studies using various ischemia-reperfusion protocols comparing wildtype and Per2-/- mice. Lactate measurements in whole blood confirmed a dominant role of Per2 for lactate production during myocardial ischemia. Surprisingly, high-throughput gene array analysis of eight different conditions on one 24-microarray plate revealed dominantly lipid metabolism as differentially regulated pathway in wildtype mice when compared to Per2-/-. In all treatment groups, the enzyme enoyl-CoA hydratase, which is essential in fatty acid beta-oxidation, was regulated in wildtype animals only. Studies using nuclear magnet resonance imaging (NMRI) confirmed altered fatty acid populations with higher mono-unsaturated fatty acid levels in hearts from Per2-/- mice. Unexpectedly, studies on gene regulation during reperfusion revealed solely pro inflammatory genes as differentially regulated 'Per2-genes'. Subsequent studies on inflammatory markers showed increasing IL6 or TNFa levels during reperfusion in Per2-/- mice. In summary, these studies reveal a novel role of cardiac Per2 for fatty acid metabolism or inflammation during myocardial ischemia and reperfusion.
Cardiac Per2 functions as novel link between fatty acid metabolism and myocardial inflammation during ischemia and reperfusion injury of the heart.
Sex, Specimen part
View SamplesThe androgen receptor (AR) is a mediator of both androgen-dependent and castration- resistant prostate cancers. Identification of cellular factors affecting AR transcriptional activity could in principle yield new targets that reduce AR activity and combat prostate cancer, yet a comprehensive analysis of the genes required for AR-dependent transcriptional activity has not been determined. Using an unbiased genetic approach that takes advantage of the evolutionary conservation of AR signaling, we have conducted a genome-wide RNAi screen in Drosophila cells for genes required for AR transcriptional activity and applied the results to human prostate cancer cells. We identified 45 AR-regulators, which include known pathway components and genes with functions not previously linked to AR regulation, such as HIPK2 (a protein kinase) and MED19 (a subunit of the Mediator complex). Depletion of HIPK2 and MED19 in human prostate cancer cells decreased AR target gene expression and, importantly, reduced the proliferation of androgen-dependent and castration-resistant prostate cancer cells. We also systematically analyzed additional Mediator subunits and uncovered a small subset of Mediator subunits that interpret AR signaling and affect AR-dependent transcription and prostate cancer cell proliferation. Importantly, targeting of HIPK2 by an FDA approved kinase inhibitor phenocopied the effect of depletion by RNAi and reduced the growth of AR-positive, but not AR negative, treatment-resistant prostate cancer cells. Thus, our screen has yielded new AR regulators including drugable targets that reduce the proliferation of castration-resistant prostate cancer cells.
A genome-wide RNA interference screen identifies new regulators of androgen receptor function in prostate cancer cells.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Activation of MAPK pathways links LMNA mutations to cardiomyopathy in Emery-Dreifuss muscular dystrophy.
No sample metadata fields
View SamplesThe present research is devoted to the identification of gene(s) severely affected by LMNA mutations, leading to striated muscle laminopathies and more specifically the cardiomyopathy. For this purpose, we developped a large-scale gene expression approach on heart and skeletal tissues from Lmna H222P heterozygous Knock-In mouse model.
Activation of MAPK pathways links LMNA mutations to cardiomyopathy in Emery-Dreifuss muscular dystrophy.
No sample metadata fields
View SamplesThe present research is devoted to the identification of gene(s) severely affected by LMNA mutations, leading to striated muscle laminopathies and more specifically the cardiomyopathy. For this purpose, we developped a large-scale gene expression approach on heart and skeletal tissues from Lmna H222P heterozygous Knock-In mouse model.
Activation of MAPK pathways links LMNA mutations to cardiomyopathy in Emery-Dreifuss muscular dystrophy.
No sample metadata fields
View SamplesThis study was performed to check that ESR1 and BMI1 are biologically active after lentiviral transduction of primary human mammary epithelial cells (HMECs) with lentiviral vectors expressing ESR1 and BMI1 from the human PGK promoter. ESR1 targets like PGR, PRLR and GREB1, but not TFF1 and XBP1, were induced by estradiol in the ESR1-expressing cells. BMI1 targets like BMI1, NEFL and CCND2 were repressed in the BMI1-expressing cells. BMI1 suppressed genes associated with squamous and neural differentiation in the ESR1 plus BMI1-expressing cells.
An oestrogen-dependent model of breast cancer created by transformation of normal human mammary epithelial cells.
No sample metadata fields
View SamplesWe introduce a family of multivalent peptidomimetic conjugates that modulate the activity of the androgen receptor (AR). Bioactive ethisterone ligands were conjugated to a set of sequence-specific peptoid oligomers. Certain multivalent peptoid conjugates enhance AR-mediated transcriptional activation. We identify a linear and a cyclic conjugate that exhibit potent anti-proliferative activity in LNCaP-abl cells, a model of therapy-resistant prostate cancer. The linear conjugate blocks AR action by competing for ligand binding. In contrast, the cyclic conjugate is active despite its inability to compete against endogenous ligand for binding to AR in vitro, suggesting a non-competitive mode of action. These results establish a versatile platform to design competitive and non-competitive AR modulators with potential therapeutic significance.
Androgen receptor antagonism by divalent ethisterone conjugates in castrate-resistant prostate cancer cells.
Cell line
View SamplesExposure to vanadium pentoxide (V2O5) is a cause of occupational bronchitis. We evaluated gene expression profiles in cultured human lung fibroblasts exposed to V2O5 in vitro in order to identify candidate genes that could play a role in airway remodeling associated with V2O5-induced bronchitis. Gene expression was measured at various time points over a 24 hr period using the Affymetrix Human Genome U133A 2.0 Array. Expression data were preprocessed using RMA with a log2 transformation. Statistical analysis was performed in R using the affylmGUI package using a linear model with contrasts between untreated control and V2O5-exposed fibroblasts. Genes identified as statistically significant were filtered by selecting only those genes that exhibited a > 2-fold change. Quantitative real-time RT-PCR was utilized to confirm expression of selected genes. More than 2000 genes were significantly changed in response to V2O5 over the time course of our experiment. Genes altered by V2O5 were involved in biologic processes related to cell growth and differentiation, oxidative stress responses, immune regulation, and interferon signaling and apoptosis. In particular, V2O5 induced genes that encode growth factors involved in epithelial repair (HB-EGF) or angiogenesis (VEGF), peroxide generating enzymes (SOD2), pro-inflammatory enzymes (PGHS2), while suppressing genes involved in growth arrest (GAS1, STAT-1) and cell cycle inhibition (CDKN1B). Our study also identified a variety of novel genes that could be used as biomarkers of V2O5-induced bronchitis or could serve as candidate genes for disease progression.
Genomic analysis of human lung fibroblasts exposed to vanadium pentoxide to identify candidate genes for occupational bronchitis.
No sample metadata fields
View Samples