Chronic loss of Lasp1 alters the expression of other genes associated with cell motility/attachment, and/or other cellular functions. Results provide new information showing that loss of Lasp1 leads to up- and down-regulation of genes involved in cell motility/attachment/growth.
Lasp1 gene disruption is linked to enhanced cell migration and tumor formation.
No sample metadata fields
View SamplesGene expression profiles in Ba/F3 cells expressing ETV6-PDGFRB, FIP1L1-PDGFRA or a control vector, treated or not with imatinib (Glivec)
The expression of the tumour suppressor HBP1 is down-regulated by growth factors via the PI3K/PKB/FOXO pathway.
Specimen part, Cell line, Treatment
View SamplesAngiotensin II (Ang-II) regulates adrenal steroid production and gene transcription through several signaling pathways. Changes in gene transcription occur within minutes after Ang-II stimulation, causing an acute increase in aldosterone production and subsequent increase in the overall capacity to produce aldosterone. Our goal was to compare the Ang-II regulation of early gene expression and confirm the upregulation of selected genes using quantitative real-time RT-PCR (qPCR) across three species: human, bovine, and rat.
Angiotensin-II acute regulation of rapid response genes in human, bovine, and rat adrenocortical cells.
No sample metadata fields
View SamplesAdipocyte precursor cells were treated with Pdgfa during 1 or 2 hours in vitro to identify early changes in transciprion in response to treatment. This experiment supports the evidence that Pdgfa induces proliferation and maintenance of adipocyte stem cells. Overall design: Adipocyte precursor cells were isolated by FACS and treated with 30ng/ml of recombinant mouse Pdgfa for 1 or 2 hours.
Skin Adipocyte Stem Cell Self-Renewal Is Regulated by a PDGFA/AKT-Signaling Axis.
Sex, Age, Specimen part, Cell line, Subject
View SamplesSystemic lupus erythematosus (SLE) is an autoimmune disorder characterized by the production of antibodies to self-nucleic acids, immune complex deposition and tissue inflammation such as glomerulonephritis. Innate recognition of molecular complexes containing self-DNA and RNA and the ensuing production of type I interferons (IFN) contribute to SLE development. Plasmacytoid dendritic cells (pDCs) have been proposed as a relevant source of pathogenic IFN in SLE; however, their net contribution to the disease remains unclear. We addressed this question using haplodeficiency of the pDC-specific transcription factor E2-2 (Tcf4), which causes a specific impairment of pDC function in otherwise normal animals. We report that Tcf4+/- animals were significantly protected from SLE-like disease caused by the overexpression of the endosomal RNA sensor Tlr7. The protection was also observed after the monoallelic deletion of Tcf4 specifically in the dendritic cell lineage. Furthermore, Tcf4 haplodeficiency in the B6.Sle1.Sle3 multigenic model of SLE ameliorated key disease manifestations including anti-DNA antibody production, immune activation and glomerulonephritis. These results provide genetic evidence that pDCs are critically involved in SLE pathogenesis, confirming their potential utility as therapeutic targets in the disease.
Genetic evidence for the role of plasmacytoid dendritic cells in systemic lupus erythematosus.
Sex, Specimen part
View SamplesContinuous stress caused by smoking induces changes in the cell population of small airway epithelium, with basal cell hyperplasia and goblet cell metaplasia at the expense of ciliated cells, and there is now compiling evidence that basal cells play a key role in the early pathogenesis of Chronic Obtructive Pulmonary Disease (COPD).
Microarray analysis identifies defects in regenerative and immune response pathways in COPD airway basal cells.
Specimen part, Disease stage
View SamplesThe oncogenic proteins expressed in human cancer cells are exceedingly difficult targets for drug discovery due to intrinsic properties of the Ras GTPase switch. As a result, recent efforts have largely focused on inhibiting Ras-regulated kinase effector cascades, particularly the Raf/MEK/ERK and PI3 kinase/Akt/mTOR pathways. We constructed murine stem cell leukemia virus (MSCV) vectors encoding oncogenic K-RasD12 with additional second site amino acid substitutions that that impair PI3 kinase/Akt or Raf/MEK/ERK activation and performed bone marrow transduction/transplantation experiments in mice. In spite of attenuated signaling properties, defective K-Ras oncoproteins induced aggressive clonal T lineage acute lymphoblastic leukemia (T-ALL). These leukemias exhibited a high frequency of somatic Notch1 mutations, which is also true of human T-ALL. Multiple independent T-ALLs restored full oncogenic Ras activity by acquiring third site mutations within the viral KrasD12 transgenes. Other leukemias with undetectable PTEN and elevated phosphoryated Akt levels showed a similar gene expression profile to human early T progenitor (ETP) T-ALL. Expressing oncoproteins that are defective for specific functions is a general strategy for assessing requirements for tumor maintenance and uncovering potential mechanisms of drug resistance in vivo. In addition, our observation that defective Kras oncogenes regain potent cancer initiating activity strongly supports simultaneously targeting distinct components of Ras signaling networks in the substantial fraction of cancers with RAS mutations.
Defective K-Ras oncoproteins overcome impaired effector activation to initiate leukemia in vivo.
Specimen part, Cell line
View SamplesWe have determined that verticillin A is a histone methyltransfease inhibitor that selectively inhibits human SUV39H1, SUV39H2, G9a and GLP to inhibit H3K9 methylation in human colon cancer cells. The objective here is to identify verticillin A target genes in human colon cancer cells.
H3K9 Trimethylation Silences Fas Expression To Confer Colon Carcinoma Immune Escape and 5-Fluorouracil Chemoresistance.
Cell line, Treatment
View SamplesWe performed a microarray experiment to assess the global changes in transcription occurring in leaves and roots of the vitamin B6 deficient pdx1.3 knockout mutant in comparison to WT. Vitamin B6 (pyridoxal 5-phosphate) is an essential cofactor of many metabolic enzymes. Plants biosynthesize the vitamin de novo employing two enzymes, pyridoxine synthase1 (PDX1) and PDX2. In Arabidopsis (Arabidopsis thaliana), there are two catalytically active paralogs of PDX1 (PDX1.1 and PDX1.3) producing the vitamin at comparable rates. Since single mutants are viable but the pdx1.1 pdx1.3 double mutant is lethal, the corresponding enzymes seem redundant.
Consequences of a deficit in vitamin B6 biosynthesis de novo for hormone homeostasis and root development in Arabidopsis.
Specimen part
View SamplesEBF1 is essential for B cell specification and commitment. To explore the dynamics of EBF1 initiated B cell programming, we performed EBF1 ChIP-seq, ATAC-seq, bisulfite-seq, RNA-seq and several histone ChIP-seq analyses at different stages of the transition from Ebf1-/- pre-pro-B to pro-B triggered by EBF1 restoration. We also performed Pax5 ChIP-seq in Ebf1-/- pre-pro-B cell and EBF1-restored pro-B cell to study the pioneering function of EBF1 that allows other transcription factors to access certain chromatin sites. Overall design: Time series RNA-Seq analysis during the differentiation from Ebf1-deficient pre-pro-B cell to EBF1-restored pro-B cell.
Dynamic EBF1 occupancy directs sequential epigenetic and transcriptional events in B-cell programming.
Subject
View Samples