To characterize gene response in RPE65-/- mouse model of Lebers congenital amaurosis during progression of the disease, we analyzed differential gene expression in retinae early in the development of the disease, namely before and at the onset of photoreceptor cell death in knock-out mice of 2, 4 and 6 months of age.
Biological characterization of gene response in Rpe65-/- mouse model of Leber's congenital amaurosis during progression of the disease.
Age, Specimen part
View SamplesWe present single-cell mRNA-Sequencing of various endothelial and hematopoietic populations isolated from the mouse embryonic aorta at E10 and E11. Our study reveals the transcriptional dynamics occuring during endothelial to hematopoietic transition, the process responsible for the production of hematopoietic stem cells. Overall design: single-cell mRNA-Sequencing of various endothelial and hematopoietic populations isolated from the mouse embryonic aorta at E10 and E11
Single-cell transcriptomics reveal the dynamic of haematopoietic stem cell production in the aorta.
Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Comparative transcriptome profiling of the injured zebrafish and mouse hearts identifies miRNA-dependent repair pathways.
Age, Specimen part
View SamplesThe mammalian heart has poor regenerative capacity following injury. In contrast, certain lower vertebrates such as zebrafish retain a robust capacity for regeneration into adult life. Here we use an integrated approach to identify evolutionary conserved regenerative miRNA-dependant regulatory circuits in the heart. We identified novel miRNA-dependant networks involved in critical biological pathways, which are differentially utilized between the infarcted mouse heart and the regenerating zebrafish heart.
Comparative transcriptome profiling of the injured zebrafish and mouse hearts identifies miRNA-dependent repair pathways.
Age, Specimen part
View SamplesThe mammalian heart has poor regenerative capacity following injury. In contrast, certain lower vertebrates such as zebrafish retain a robust capacity for regeneration into adult life. Here we use an integrated approach to identify evolutionary conserved regenerative miRNA-dependant regulatory circuits in the heart. We identified novel miRNA-dependant networks involved in critical biological pathways, which are differentially utilized between the infarcted mouse heart and the regenerating zebrafish heart. Overall design: 2 conditions, 4 biological replicates per condition
Comparative transcriptome profiling of the injured zebrafish and mouse hearts identifies miRNA-dependent repair pathways.
No sample metadata fields
View SamplesThe mammalian heart has poor regenerative capacity following injury. In contrast, certain lower vertebrates such as zebrafish retain a robust capacity for regeneration into adult life. Here we use an integrated approach to identify evolutionary conserved regenerative miRNA-dependant regulatory circuits in the heart. We identified novel miRNA-dependant networks involved in critical biological pathways, which are differentially utilized between the infarcted mouse heart and the regenerating zebrafish heart.
Comparative transcriptome profiling of the injured zebrafish and mouse hearts identifies miRNA-dependent repair pathways.
Specimen part
View SamplesThe mammalian heart has poor regenerative capacity following injury. In contrast, certain lower vertebrates such as zebrafish retain a robust capacity for regeneration into adult life. Here we use an integrated approach to identify evolutionary conserved regenerative miRNA-dependant regulatory circuits in the heart. We identified novel miRNA-dependant networks involved in critical biological pathways, which are differentially utilized between the infarcted mouse heart and the regenerating zebrafish heart. Overall design: 2 conditions, 3 biological replicates per condition
Comparative transcriptome profiling of the injured zebrafish and mouse hearts identifies miRNA-dependent repair pathways.
Age, Specimen part, Cell line, Subject
View SamplesTo understand organ (dys)function it is important to have a complete inventory of its cell types and the corresponding markers that unambiguously identify these cell types. This is a challenging task, in particular in human tissues, because unique cell-type markers are typically unavailable, necessitating the analysis of complex cell type mixtures. Transcriptome-wide studies on pancreatic tissue are typically done on pooled islet material. To overcome this challenge we sequenced the transcriptome of thousands of single pancreatic cells from deceased organ donors with and without type 2 diabetes (T2D) allowing in silico purification of the different cell types. We identified the major pancreatic cell types resulting in the identification of many new cell-type specific and T2D-specific markers. Additionally we observed several subpopulations within the canonical pancreatic cell types, which we validated in situ. This resource will be useful for developing a deeper understanding of pancreatic biology and diabetes mellitus. Overall design: Human cadaveric pancreata were used to extract islets of Langerhans, which were kept in culture until single-cell dispersion and FACS sorting. Single-cell transcriptomics was performed on live cells from this mixture using CEL-seq or on cells stained for CD63, CD13, TGFBR3 or CD24 and CD44. The RaceID algorithm was used to identify clusters of cells corresponding to the major pancreatic cell types and to mine for novel cell type-specific genes as well as subpopulations within the known pancreatic cell types.
De Novo Prediction of Stem Cell Identity using Single-Cell Transcriptome Data.
Specimen part, Subject
View SamplesPaneth cells (PCs) are long-lived secretory cells that reside at the bottoms of small intestinal crypts. Besides serving as niche cells for the neighboring Lgr5-positive stem cells, PCs secrete granules containing a broad spectrum of antimicrobial proteins, including lysozymes and defensins1. Here, we have used single-cell RNA sequencing to explore PC differentiation. We found a maturation gradient from early secretory progenitors to mature PCs, capturing the full maturation path of PCs. Moreover, differential expression of a subset of defensin genes in lysozyme-high PCs, e.g. Defa20, reveals at least two distinct stages of maturation. Overall design: We traced Lgr5+ stem cells from Lgr5-CreERT2 C57Bl6/J mice bred to a Rosa26LSL-YFP reporter mice and sorted YFP+ cells 5 days, 3 weeks and 8 weeks after tamoxifen injection.
De Novo Prediction of Stem Cell Identity using Single-Cell Transcriptome Data.
Specimen part, Cell line, Subject
View SamplesAcute myeloid leukemia (AML) is a heterogeneous group of malignancies which may be sensitive to the natural killer (NK) cell anti-tumor response. However, NK cells are frequently defective in AML. Here, we found in an exploratory cohort (n = 46) that NK-cell status at diagnosis of AML separated patients in two groups with a different clinical outcome. Patients with a deficient NK-cell profile, including reduced expression of some activating NK receptors (e.g. DNAM-1, NKp46 and NKG2D) and decreased IFN-g production, had a significantly higher risk of relapse (P = 0.03) independently of cytogenetic classification in multivariate analysis. Patients with defective NK cells showed a profound gene expression decrease in AML blasts for cytokine and chemokine signaling (e.g. IL15, IFNGR1, IFNGR2, CXCR4), antigen processing (e.g. HLA-DRA, HLA-DRB1, CD74) and adhesion molecule pathways (e.g. PVR, ICAM1). A set of 388 leukemic classifier genes defined in the exploratory cohort was independently validated in a multicentric cohort of 194 AML patients. In total, these data evidenced the interplay between NK-cells and AML blasts at diagnosis allowing an immune-based stratification of AML patients independently of clinical classifications.
Defective NK Cells in Acute Myeloid Leukemia Patients at Diagnosis Are Associated with Blast Transcriptional Signatures of Immune Evasion.
Disease, Subject
View Samples