Although glucocorticoids (GCs) are known to exert numerous effects in the hippocampus, their chronic regulatory functions remain poorly understood. Moreover, evidence is inconsistent regarding the longstanding hypothesis that chronic GC exposure promotes brain aging/Alzheimer's disease. Here, we adrenalectomized male F344 rats at 15-months-of-age, maintained them for 3 months with implanted corticosterone (CORT) pellets producing low or intermediate (glucocorticoid-receptor (GR)-activating) blood levels of CORT, and performed microarray/pathway analyses in hippocampal CA1. We defined the chronic GC-dependent transcriptome as 393 genes that exhibited differential expression between Intermediate- and Low-CORT groups. Short-term CORT (4 days) did not recapitulate this transcriptome. Functional processes/pathways overrepresented by chronic CORT-upregulated genes included learning/plasticity, differentiation, glucose metabolism and cholesterol biosynthesis, whereas processes overrepresented by CORT-downregulated genes included inflammatory/immune/glial responses and extracellular structure. These profiles indicate that GCs chronically activate neuronal/metabolic processes while coordinately repressing a glial axis of reactivity/inflammation. We then compared the GC-transcriptome with a previously-defined hippocampal aging transcriptome, revealing a high proportion of common genes. Although CORT and aging moved expression of some common genes in the same-direction, the majority were shifted in opposite directions by CORT and aging (e.g., glial inflammatory genes downregulated by CORT are upregulated with aging). These results contradict the hypothesis that GCs simply promote brain aging, and also suggest that the opposite-direction shifts during aging reflect resistance to CORT regulation. Therefore, we propose a new model in which aging-related GC resistance develops in some target pathways while GC overstimulation develops in others, together generating much of the brain aging phenotype.
Glucocorticoid-dependent hippocampal transcriptome in male rats: pathway-specific alterations with aging.
Sex, Age, Specimen part
View SamplesThe effect of cafeteria (CAF) diet in PBMC gene expression was analyzed in two inbred rat strains
Identification of a nutrient-sensing transcriptional network in monocytes by using inbred rat models on a cafeteria diet.
Sex, Specimen part
View SamplesThis study characterizes the response of primary human endothelial cells (human umbilical vein endothelial cells, HUVECs) to the relative shear stress changes that occur during the initiation of arteriogenesis at the entrance regions to a collateral artery network. HUVECs were preconditioned to a baseline level of unidirectional shear of 15 dynes/cm2 for 24 hours. After 24 hours preconditioning, HUVECs were subjected to an arteriogenic stimulus that mimics the shear stress changes observed in the opposing entrance regions into a collateral artery network. The arteriogenic stimulus consisted of a 100% step wise increase in shear stress magnitude to a unidirectional 30 dynes/cm2 in either the same or opposite direction of the preconditioned shear stress. This simulates either the feeding entrance to the collateral artery circuit or the region that drains into the vasculature downstream of an obstruction in a major artery, respectively. In vivo analysis of collateral growth in the mouse hindlimb showed enhanced outward remodeling in the re-entrant (direction reversing) region that reconnects to the downstream arterial tree, suggesting reversal of shear stress direction as a key enhancer of arteriogenesis. Transcriptional profiling using microarray techniques identified that the reversal of shear stress direction, but not an increase in shear stress alone, yielded a broad-based enhancement of the mechanotransduction pathways necessary for the induction of arteriogenesis.
Mechanisms of Amplified Arteriogenesis in Collateral Artery Segments Exposed to Reversed Flow Direction.
Specimen part
View SamplesBackground: Mycobacterium tuberculosis infection is a leading cause of infectious death worldwide. Gene-expression microarray studies profiling the blood transcriptional response of tuberculosis (TB) patients have been undertaken in order to better understand the host immune response as well as to identify potential biomarkers of disease. To date most of these studies have focused on pulmonary TB patients with gene-expression profiles of extra-pulmonary TB patients yet to be compared to those of patients with pulmonary TB or sarcoidosis.
The Transcriptional Signature of Active Tuberculosis Reflects Symptom Status in Extra-Pulmonary and Pulmonary Tuberculosis.
Sex, Age, Specimen part, Disease, Disease stage, Race
View SamplesWe report the single-cell RNA sequencing data obtained from MDA-MB-231 breast cancer cells cultured in standard DMEM with 25 mM glucose, or adapted to culture in DMEM with 10 mM fructose to reduce glycolysis, and then cultured as mammospheres Overall design: Examination of transcriptomic changes in MDA-MB-231 breast cancer cells mammospheres in response to restriction of glycolysis
The effects of restricted glycolysis on stem-cell like characteristics of breast cancer cells.
Cell line, Subject
View SamplesWe profiled total mRNA of pancreas and kidney tissues of 3 different strains (p53-null; In4a/Arf-null and WT) of reprogrammable mouse lines (they all express OCT4, SOX2, KLF4, C-MYC under the control of a tetracycline promoter, activated by doxycycline) Overall design: 5 mice of each genotype were treated with doxycycline to induce the expression of the reprogramming factors, they were sacrificed and total mRNA was extracted from pancreas and kidney tissues (we mapped >24M reads per sample)
Tissue damage and senescence provide critical signals for cellular reprogramming in vivo.
Specimen part, Cell line, Subject
View SamplesOne of the main problems in managing desmoids tumors is their locoregional aggressiveness and their high ability to recur after initial treatment. In our work, with the goal to identify molecular markers that can predict Progression-Free Survival, gene-expression screening was conducted on 128 available independent untreated primary desmoid tumors using cDNA microarray. By analyzing expression profiles, we have identified, for the first time, a gene expression signature that is able to predict Progression-Free Survival. This molecular signature identified two groups with clearly distinct Progression-Free Survival in the two sets of subjects. Patients in good prognostic group had achieved a progression-free 2-year survival rate of 86% while patients in poor prognostic group had a progression-free 2-year survival rate of 44%.
Gene Expression Profiling of Desmoid Tumors by cDNA Microarrays and Correlation with Progression-Free Survival.
Sex, Age, Specimen part
View SamplesPurpose: Human papilloma virus (HPV) associated head and neck squamous cell carcinoma (HNSCC) has a better prognosis than HPV(-) negative cancer. This may be due, in part, to the higher number of tumour infiltrating lymphocytes (TIL) in HPV(+) tumours. We used RNAseq to evaluate whether these differences in clinical behaviour could be explained simply by a numerical difference in TILs or whether there was a fundamental difference between TILs in these two settings. Patients and methods: Twenty-three consecutive HNSCC cases with high and moderate TIL density were subjected to RNAseq analysis. Differentially expressed genes (DEG) between 10 HPV(+) and 13 HPV(-) tumours were identified with EdgeR. Immune subset analysis was performed using, FAIME (Functional Analysis of Individual Microarray Expression) and Immune gene transcript count analysis. Results: 1634 genes were differentially expressed. There was a dominant immune signature in HPV(+) tumours. After normalizing expression profiles for numerical differences in T cells and B cells, 437 significantly DEGs still remained. A B-cell associated signature emerged, which segregated HPV(+) from HPV(-) cancers and included CD200, STAG3, GGA2, SPIB and ADAM28. Differential expression of these genes was confirmed by real-time quantitative PCR and immunohistochemistry. Conclusion: In our dataset, the difference associated with T-cells between patients with HPV(+) and (-) HNSCC was predominantly numerical. However, when TIL numbers are corrected, a distinct differential B-cell signature was revealed. Overall design: mRNA profiles of 10 HPV driven (HPV+) and 13 HPV independant (HPV-) head and neck squamous cell carcinoma (HNSCC) tumours were generated by RNA-Seq, using Illumina HiSeq 2000.
HPV, tumour metabolism and novel target identification in head and neck squamous cell carcinoma.
No sample metadata fields
View SamplesGraft versus host disease (GVHD) is the most common complication of hematopoietic stem cell transplant (HCT). However, our understanding of the molecular pathways that cause this disease remains incomplete, leading to inadequate treatment strategies. To address this, we measured the gene expression profile of non-human primate (NHP) T cells during acute GVHD. In this study we specifically interrogated the transcriptional signatures of animals treated with FR104 monotherapy and FR104/Sirolimus combination therapy
Combined OX40L and mTOR blockade controls effector T cell activation while preserving T<sub>reg</sub> reconstitution after transplant.
Specimen part, Subject
View SamplesGraft versus host disease (GVHD) is the most common complication of hematopoietic stem cell transplant (HCT). However, our understanding of the molecular pathways that cause this disease remains incomplete, leading to inadequate treatment strategies. To address this, we measured the gene expression profile of non-human primate (NHP) T cells during acute GVHD. In this study we specifically interrogated the transcriptional signatures of animals treated with KY1005 monotherapy and KY1005/Sirolimus combination therapy
Combined OX40L and mTOR blockade controls effector T cell activation while preserving T<sub>reg</sub> reconstitution after transplant.
No sample metadata fields
View Samples