The cascade of molecular events involved in mammalian sex determination has been shown to involve the SRY gene, but specific downstream events have eluded researchers for decades. The current study identifies one of the first direct downstream targets of the male sex-determining factor SRY as the basic-helix-loop-helix (bHLH) transcription factor TCF21. SRY was found to directly associate with the Tcf21 promoter SRY/SOX9 response element both in vitro and in vivo during male sex determination. TCF21 was found to promote an in vitro sex reversal of embryonic ovarian cells to promote precursor Sertoli cell differentiation. Therefore, SRY acts directly on the Tcf21 promoter to, in part, initiate a cascade of events associated with Sertoli cell differentiation and embryonic testis development.
Basic helix-loop-helix transcription factor TCF21 is a downstream target of the male sex determining gene SRY.
Sex, Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Environmentally induced transgenerational epigenetic reprogramming of primordial germ cells and the subsequent germ line.
Sex, Specimen part, Treatment, Time
View SamplesA number of environmental factors (e.g. toxicants) have been shown to promote the epigenetic transgenerational inheritance of disease and phenotypic variation. Transgenerational inheritance requires the germline transmission of altered epigenetic information between generations in the absence of direct environmental exposures. The primary periods for epigenetic programming of the germline is associated with primordial germ cell development and during fetal gonadal sex determination. The current study examined the actions of an agricultural fungicide vinclozolin on gestating female (F0 generation) progeny in regards to the primordial germ cell (PGC) epigenetic reprogramming of the F3 generation (i.e. great-grandchildren). The F3 generation primordial germ cell transcriptome and epigenome (DNA methylation) was altered transgenerationally. Interestingly, the differential DNA methylation regions (DMR) and altered transcriptomes were distinct between the onset of gonadal sex determination at embryonic day 13 (E13) and after cord formation in the testis at embryonic day 16 (E16). A larger number of DMR and transcriptional alterations were observed in the E13 PGC than E16 germ cells. Observations demonstrate an altered transgenerational epigenetic reprogramming and function of the primordial germ cells and subsequent male germline is a component of vinclozolin induced epigenetic transgenerational inheritance of disease. Insights into the molecular control of germline transmitted epigenetic inheritance are provided.
Environmentally induced transgenerational epigenetic reprogramming of primordial germ cells and the subsequent germ line.
Sex, Specimen part, Treatment
View SamplesDefective permeability barrier is an important feature of many skin diseases and causes mortality in premature infants. To investigate the control of barrier formation, we characterized the epidermally expressed Grainyhead-like epithelial transactivator (Get-1)/Grhl3, a conserved mammalian homologue of Grainyhead, which plays important roles in cuticle development in Drosophila. Get-1 interacts with the LIM-only protein LMO4, which is co-expressed in the developing mammalian epidermis. The epidermis of Get-1(-/-) mice showed a severe barrier function defect associated with impaired differentiation of the epidermis, including defects of the stratum corneum, extracellular lipid composition and cell adhesion in the granular layer. The Get-1 mutation affects multiple genes linked to terminal differentiation and barrier function, including most genes of the epidermal differentiation complex. Get-1 therefore directly or indirectly regulates a broad array of epidermal differentiation genes encoding structural proteins, lipid metabolizing enzymes and cell adhesion molecules. Although deletion of the LMO4 gene had no overt consequences for epidermal development, the epidermal terminal differentiation defect in mice deleted for both Get-1 and LMO4 is much more severe than in Get-1(-/-) mice with striking impairment of stratum corneum formation. These findings indicate that the Get-1 and LMO4 genes interact functionally to regulate epidermal terminal differentiation.
The Grainyhead-like epithelial transactivator Get-1/Grhl3 regulates epidermal terminal differentiation and interacts functionally with LMO4.
Specimen part
View SamplesPublished molecular profiling studies in patients with lymphoma suggested the influence of hypoxia inducible factor-1 alpha (HIF1) targets in prognosis of DLBCL. Yet, the role of hypoxia in hematological malignancies remains unclear. We observed that activation of HIF1 resulted in global translation repression during hypoxic stress in DLBCL. Protein translation efficiency as measured using 35S-labeled methionine incorporation revealed a 50% reduction in translation upon activation of HIF1. Importantly, translation was not completely inhibited and expression of clinically correlated hypoxia targets such as GLUT1, HK2, and CYT-C was found to be refractory to translational repression under hypoxia in DLBCL cells. Notably, hypoxic induction of these genes was not observed in normal primary B-cells. Translational repression was coupled with a decrease in mitochondrial function. Screening of primary DLBCL patient samples revealed that expression of HK2, which encodes for the enzyme hexokinase 2, was significantly correlated with DLBCL phenotype. Genetic knockdown studies demonstrated that HK2 is required for promoting growth of DLBCL under hypoxic stress. Altogether, our findings provide strong support for the direct contribution of HK2 in B-cell lymphoma development and suggest that HK2 is a key metabolic driver of the DLBCL phenotype.ne incorporation revealed a 50% reduction in translation upon activation of HIF1. Importantly, translation was not completely blunted and expression of clinically correlated hypoxia targets such as GLUT1, HK2, and CYT-C was found to be refractory to translational repression under hypoxia in DLBCL cells. Notably, hypoxic induction of these genes was not observed in normal primary B-cells. Translational repression was coupled with decrease in mitochondrial function. Screening of DLBCL patient samples identified that expression of HK2, which encodes for the enzyme hexokinase 2, was significantly correlated with DLBCL phenotype. Genetic knockdown studies show that HK2 is required for promoting growth of DLBCL under hypoxic stress. Altogether, our findings provide more definitive proof of direct contribution of HK2 in development of B-cell lymphoma and suggest that HK2 is a key metabolic driver of DLBCL phenotype.
Role of hypoxia in Diffuse Large B-cell Lymphoma: Metabolic repression and selective translation of HK2 facilitates development of DLBCL.
Cell line, Treatment
View SamplesHuman transcriptome array analysis of human cord blood mononuclear leokocytes from neonates exposed to histological chorioamnionitis and compared with healthy neonates
Histological Chorioamnionitis Induces Differential Gene Expression in Human Cord Blood Mononuclear Leukocytes from Term Neonates.
Specimen part
View SamplesThe epicardium, an epithelium covering the heart, is essential for cardiac development. During embryogenesis, the epicardium provides instructive signals for the growth and maturation of cardiomyocytes and for coronary angiogenesis. We generated an in vitro model of human embryonic epicardium derived from human pluripotent stem cells (hPSC-epi). These cells were able to differentiate into cardiac fibroblasts (cf) and smooth muscle cells (smc) in vitro (hPSC-epi-cf and hPSC-epi-smc respectively). Furthermore, we showed that they improved maturation of hPSC-derived cardiomyocytes (hPSC-cardio) in vitro while neural crest cells derived from hPSC (hPSC-NC) could not. Furthermore, they improved survival of hPSC-cardio and stimulated angiogenesis when injected in a rat model of myocardium infarction. We performed mRNA sequencing of the hPSC-epi, hPSC-epi-cf, hPSC-smc and hPSC-NC in order to identify the secreted molecules specifically produced by the hPSC-epi and/or its derivatives in comparison with the hPSC-NC. Vascular smooth muscle cells have different embryonic origins and different properties depending on their location in the body. The coronary smooth muscle cells come from the epicardium while the aortic ones come from the mesoderm or the neural crest. We performed mRNA sequencing of human coronary artery smc and human aortic smc to identify a specific signature of the coronary smc. We also compared the genes expressed in the hPSC-epi-smc and the smc derived from hPSC-derived lateral plate mesoderm. Overall design: For hPSC-derived samples the three replicates are coming from three different in vitro differentiations from H9. For the human primary cells, the triplicates are technical replicates (three different wells from the same culture at the same passage)
Epicardial cells derived from human embryonic stem cells augment cardiomyocyte-driven heart regeneration.
Specimen part, Subject
View SamplesEarly innate lymphoid progenitors (EILP) have recently been identified in the mouse adult bone marrow as a multipotential progenitor population committed to ILC lineages, but their relationship with other described ILC progenitors is still unclear. In this study, we examine the progenitor-successor relationships between EILP, IL-7R+ common lymphoid progenitors (ALP), and ILC precursors (ILCp). Bioinformatic, phenotypical, functional, and genetic approaches collectively establish EILP as an intermediate progenitor between ALP and ILCp. Our work additionally provides new candidate regulators of ILC development and clearly defines the stage of requirement of transcription factors key for early ILC development. Overall design: transcriptional profiling of early ILC progenitors (EILP, ILCp), and common lymphoid progenitors (ALP) was performed by RNA sequencing
Development and differentiation of early innate lymphoid progenitors.
Specimen part, Cell line, Subject
View SamplesIn order to distinguish transcription changes from RNA modification and post transcription changed, nascent RNA seq via metabolic labeling of freshly synthesized RNA was carried out using 4sU labeling/biotin purification. Overall design: nascent RNA was extractred post N-MYC activation and compared with untreated cells nascent RNA to gather fold changes of pre-mRNA on gene basis.
MYC Recruits SPT5 to RNA Polymerase II to Promote Processive Transcription Elongation.
Treatment, Subject
View SamplesTcf1 is necessary for optimal T lineage development. Tcf1 deficient progenitors fail to initiate the T lineage program in vitro and development is severely defective in vivo. We used microarrays to assess the overal global gene expression differences from Tcf1 wildtype and deficient lymphoid biased progenitors cultures on Notch-ligand expressing stroma to determine if Tcf1 deficient progenitors are able to intiate the T lineage specification program.
A critical role for TCF-1 in T-lineage specification and differentiation.
Specimen part
View Samples