Aminaphtone, a drug used in the treatment of chronic venous insufficiency (CVI), showed a remarkable role in the modulation of several vasoactive factors, like endothelin-1 and adhesion molecules. We analysed in vitro the effects of Aminaphtone on whole-genome gene expression. ECV304 endothelial cells were stimulated with IL-1 100 U/ml in the presence or absence of Aminaphtone 6 g/ml. Gene expression profiles were compared at 1, 3, and 6 h after stimulation by microarray.
Gene expression profiling reveals novel protective effects of Aminaphtone on ECV304 endothelial cells.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Identification of post-transcriptional regulatory networks during myeloblast-to-monocyte differentiation transition.
Specimen part, Treatment
View SamplesTreatment of leukemia cells with 1,25-dihydroxyvitamin D3 may overcome their differentiation block and lead to the transition from myeloblasts to monocytes. To identify microRNA-mRNA networks relevant for myeloid differentiation, we profiled the expression of mRNAs and microRNAs associated to the low- and high-density ribosomal fractions in leukemic cells and in their differentiated monocytic counterpart. Intersection between mRNAs shifted across the fractions after treatment with putative target genes of modulated microRNAs showed a series of molecular networks relevant for the monocyte cell fate determination
Identification of post-transcriptional regulatory networks during myeloblast-to-monocyte differentiation transition.
Specimen part, Treatment
View SamplesTranscriptomic studies revealed that hundreds of mRNAs show differential expression in the brains of sleeping versus awake rats, mice, flies, and sparrows. Although these results have offered clues regarding the molecular consequences of sleep and sleep loss, their functional significance thus far has been limited. This is because the previous studies pooled transcripts from all brain cells, including neurons and glia.
Transcriptome profiling of sleeping, waking, and sleep deprived adult heterozygous Aldh1L1 - eGFP-L10a mice.
Disease
View SamplesTranscriptomic studies revealed that hundreds of mRNAs show differential expression in the brains of sleeping versus awake rats, mice, flies, and sparrows. Although these results have offered clues regarding the molecular consequences of sleep and sleep loss, their functional significance thus far has been limited. This is because the previous studies pooled transcripts from all brain cells, including neurons and glia.
Effects of sleep and wake on oligodendrocytes and their precursors.
Specimen part
View SamplesSp1 is a transcription factor able to regulate many genes through its DNA binding domain, containing three zinc fingers. We were interested in identifying target genes regulated by Sp1, with a special emphasis to those involved in proliferation and cancer. Our approach was to treat HeLa cells with a siRNA directed against Sp1 mRNA (siSp1) to decrease the expression of Sp1 and, in turn, the genes activated by this transcription factor. Sp1 siRNA treatment led to a great number of differentially expressed genes as determined by whole genome cDNA microarray analysis. Underexpressed genes were selected since they represent putative genes activated by Sp1. These underexpressed genes were classified in six Gene Onthology categories, namely proliferation and cancer, mRNA processing, lipidic metabolism, glucidic metabolism, transcription and translation. Putative Sp1 binding sites were found in the promoters of the selected genes using the MatchTM software. After literature mining, 11 genes were selected for further validation of their expression levels using RT-real time PCR. Underexpression was confirmed for the 11 genes plus Sp1 in HeLa cells after siSp1 treatment. Additionally, EMSA and chromatin immunoprecipitation assays were performed to test for binding between Sp1 and the promoters of these genes. We observed binding of Sp1 to the promoters of RAB20, FGF21, IHPK2, ARHGAP18, NPM3, SRSF7, CALM3, PGD and Sp1 itself. Finally, the mRNA levels of RAB20, FGF21 and IHPK2, three genes related with proliferation and cancer, were determined after overexpression of Sp1 in HeLa cells, to confirm their relationship with Sp1.
Identification of novel Sp1 targets involved in proliferation and cancer by functional genomics.
Specimen part, Cell line
View SamplesThe efficacy and exceptionally good tolerance of estrogen blockade in the treatment of breast cancer is well recognized but novel agents are required, especially to take advantage of the multiple consecutive responses obtained in breast cancer progressing following previous hormone therapy, thus delaying the use of cytotoxic chemotherapy with its usually serious side effects. Acolbifene (ACOL) is a novel and unique antiestrogen completely free of estrogen-like activity in both the mammary gland and uterus while preventing bone loss. From the preclinical and clinical data so-far available, this new antiestrogen represents a unique opportunity for a highly potent and specific blockade of estrogen action in the mammary gland and uterus while exerting estrogen-like beneficial effects in other tissues (selective estrogen receptor modulator or SERM activity). In order to better understand the specificity of action of acolbifene, we have used Affymetrix GeneChips containing 45,000 probe sets to analyze 34,000 genes to determine the specificity of this compound compared to the pure antiestrogen fulvestrant, as well as the mixed antagonists/agonists tamoxifen and raloxifene to block the effect of estradiol (E2) and to induce effects of their own on gene expression in the mouse mammary gland. The genes modulated by E2 were those identified in two separate experiments and validated by quantitative real-time PCR (Q_RT-PCR). Three hours after the single subcutaneous injection of E2 (0.05 ug), the simultaneous administration of acolbifene, fulvestrant, tamoxifen and raloxifene blocked by 98%, 62%, 43% and 92% the number of E2-upregulated genes, respectively. On the other hand, 70%, 10%, 25% and 55% of the genes down-regulated by E2 were blocked by the same compounds. Acolbifene was also the compound which, when used alone, modulated the smallest number of genes also influenced by E2, namely 4%, thus possibly explaining the potent tumoricidal action of this compound in human breast cancer xenografts where 61% of tumors disappeared, thus bringing a new paradigm in the hormonal therapy of breast cancer.
Specific transcriptional response of four blockers of estrogen receptors on estradiol-modulated genes in the mouse mammary gland.
Specimen part, Treatment
View SamplesThree different progenitor cell subsets in subcutaneous and visceral adipose tissues derived from 5 obese patients were subjected to AmpliSeq transcriptome profiling. Transcriptomic profiles were analyzed to compare progenitor cell subsets and the impact of subcutaneous and visceral adipose tissue location. Overall design: Transcriptomic profiling of 3 different progenitor cell types in subcutaneous and visceral adipose tissues derived from 5 obese patients (3X2X5=30 samples).
Lobular architecture of human adipose tissue defines the niche and fate of progenitor cells.
Subject
View SamplesTo compare the impact of hematopoietic-specific Brpf1 gene inactivation, LSK (Lin-Sca1+cKit1+) cells were sorted from wild-type and Brpf1-null fetal liver cells for RNA-Seq. Overall design: Four E14.5 embryos were used to pool sufficient LSK cells for total RNA isolation and subsequent sequencing on HiSq2500. Two independent pairs of wild-type and mutant RNA samples (each of which contained LSK cells pooled from four embryos) were used for oligo-dT primed RNA Seq.
BRPF1 is essential for development of fetal hematopoietic stem cells.
Specimen part, Subject
View SamplesThe p90 ribosomal S6 kinase (RSK) family, a downstream target of Ras/extracellular signal-regulated kinase (ERK) signaling, can mediate cross-talk with the mammalian target of rapamycin complex 1 (mTORC1) pathway. As RSK connects two oncogenic pathways in gliomas, we investigated the protein levels of the RSK isoforms RSK1-4 in non-tumoral brain (NB) and grade I-IV gliomas. RSK4 expression was not detected in any brain tissues, whereas RSK3 expression was very low, with GBMs demonstrating the lowest RSK3 protein levels. When compared to NB or low-grade gliomas (LGG), a group of glioblastomas (RSK1hi) that excluded long-survivor cases expressed higher levels of RSK1. No difference was observed in RSK2 median-expression levels among NB and gliomas; however, high levels of RSK2 in glioblastomas (GBM) were associated with worse survival. RSK1hi and, to a lesser extent, RSK2hi GBMs, showed higher levels of phosphorylated RSK, which indicates RSK activation. Transcriptome analysis indicated that most RSK1hi GBMs belonged to the mesenchymal subtype, and RSK1 expression strongly correlated with gene expression signature of immune infiltrates, in particular of activated-natural killer cells and M2 macrophages. In an independent cohort, we confirmed that RSK1hi GBMs exclude long-survivors, and RSK1 expression was associated with high protein levels of the mesenchymal subtype marker LAPTM5, as well as with high expression of CD68, which indicated the presence of infiltrating immune cells. An RSK1 signature was obtained based on differentially expressed mRNAs and validated in public glioma datasets. Enrichment of RSK1 signature followed glioma progression, recapitulating RSK1 protein expression, and was associated with worse survival not only in GBM but also in LGG. In conclusion, both RSK1 and RSK2 associate with glioma malignity, but displaying isoform-specific peculiarities. The progression-dependent expression and association with immune infiltration, suggests RSK1 as a potential progression marker and therapeutic target for gliomas.
Aberrant expression of RSK1 characterizes high-grade gliomas with immune infiltration.
Specimen part
View Samples