Mesenchymal stromal cells (MSC) are crucial components of the bone marrow (BM) microenvironment essential for regulating self-renewal, survival and differentiation of hematopoietic stem/progenitor cells (HSPC) in the stem cell niche. MSC are functionally and phenotypically altered in myelodysplastic syndromes (MDS), contributing to disease progression. MDS MSC do not harbor recurrent genetic alterations but have been shown to exhibit an altered methylome compared to MSC from healthy controls. We examined growth, differentiation and HSPC-supporting capacity of ex vivo expanded MSC from MDS patients in comparison to age-matched healthy controls after direct treatment in vitro with the hypomethylating agent azacitidine (AZA). We show that AZA exerts a direct effect on MSC by modulating their differentiation potential. Osteogenesis was significantly boosted in healthy MSC while adipogenesis was inhibited in both healthy and MDS MSC. In co-culture experiments, both AZA treated MDS MSC and healthy MSC exhibited enhanced support of non-clonal HSPC which was associated with increased cell cycle induction. Conversely, clonal MDS HSPC were inhibited by contact with AZA treated MSC. RNA-sequencing analyses of stromal cells revealed changes in pathways essential for HSPC support as well as in immune regulatory pathways. In sum, our data demonstrate that AZA treatment of stromal cells leads to upregulation of HSPC-supportive genes and cell cycle induction in co-cultured healthy HSPC, resulting in a proliferative advantage over clonal HSPC. Thus, restoration of functional hematopoiesis by AZA may be driven by activated stromal support factors in MSC providing cell cycle cues to healthy HSPC. Overall design: RNA sequencing was performed on a mesenchymal stromal cell line (EL08-1D2), either untreated or treated with Azacitidine [(-)AZA vs. (+)AZA].
Direct modulation of the bone marrow mesenchymal stromal cell compartment by azacitidine enhances healthy hematopoiesis.
Treatment, Subject
View SamplesGrowth plate chondrocytes were isolated from the distal metacarpus of young dairy cattle (all under 10 mo of age), the chondrocytes were released from the extracellular matrix by digestion with Collagenase P for 4 hours, and the various zones of the growth plate were separated by density centrifugation. The least-dense Hypertrophic Zone (HZ) cells were compared to the most-dense Reserve Zone (RZ) cells. 6 pairs of HZ vs RZ were compared by microarray.
SCF, BDNF, and Gas6 are regulators of growth plate chondrocyte proliferation and differentiation.
Sex, Specimen part
View SamplesThe Mediator complex regulates gene transcription by linking basal transcriptional machinery with DNA-bound transcription factors. The activity of the Mediator complex is mainly controlled by a kinase submodule that is comprised of four proteins, including MED12. Although ubiquitously expressed, Mediator subunits can differentially regulate gene expression in a tissue-specific manner. Here, we report that MED12 is required for normal cardiac function such that mice with conditional cardiac-specific deletion of MED12 display progressive dilated cardiomyopathy. Loss of MED12 perturbs expression of calcium handling genes in the heart, consequently altering calcium cycling in cardiomyocytes and disrupting cardiac electrical activity. We identified transcription factors that regulate expression of calcium-handling genes that are downregulated in the heart in the absence of MED12, and found that MED12 localizes to transcription factor consensus sequences within calcium handling genes. We showed that MED12 interacts with one such transcription factor, MEF2, in cardiomyocytes, and that MED12 and MEF2 co-occupy promoters of calcium handling genes. Furthermore, we demonstrated that MED12 enhances MEF2 transcriptional activity and overexpression of both increases expression of calcium handling genes in cardiomyocytes. Our data support a role for MED12 as a coordinator of transcription through MEF2 and other transcription factors. We conclude that MED12 is a regulator of a network of calcium handling genes, consequently “mediating” contractility in the mammalian heart. Overall design: Ventricle mRNA profiles of 1-day old control (CTL, CreNEG) and cardiac-specific Med12 knockout mice (Med12cKO, CrePOS) were generated by deep sequencing, in triplicate, using Illumina.
MED12 regulates a transcriptional network of calcium-handling genes in the heart.
No sample metadata fields
View SamplesConversion of fibroblasts to functional cardiomyocytes represents a potential approach for restoring cardiac function following myocardial injury, but the technique thus far has been slow and inefficient. To improve the efficiency of reprogramming fibroblasts to cardiac-like myocytes (iCMs) by cardiac transcription factors (Gata4, Hand2, Mef2c, and Tbx5=GHMT), we screened 192 protein kinases and discovered that Akt/protein kinase B dramatically accelerates and amplifies this process. Approximately 50% of reprogrammed fibroblasts displayed spontaneous beating after three weeks of induction by Akt plus GHMT. Furthermore, addition of Akt1 to GHMT evoked a more mature cardiac phenotype for iCMs, as seen by enhanced polynucleation, cellular hypertrophy, gene expression, and metabolic reprogramming. Igf1 and Pi3 kinase acted upstream of Akt, whereas mTORC1 and Foxo3a acted downstream of Akt to influence fibroblast-to-cardiomyocyte reprogramming. These findings provide new insights into the molecular basis of cardiac reprogramming and represent an important step toward further application of this technique. Overall design: We performed RNA-Seq using either isolated adult mouse ventricular cardiomyocytes (CMs) or MEFs treated for three weeks with empty vector, GHMT (iCMs cell sorted using aMHC-GFP before RNA-Seq), or AGHMT (iCMs cell sorted using aMHC-GFP before RNA-Seq).
Akt1/protein kinase B enhances transcriptional reprogramming of fibroblasts to functional cardiomyocytes.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
A zebrafish transgenic model of Ewing's sarcoma reveals conserved mediators of EWS-FLI1 tumorigenesis.
Specimen part
View SamplesMyocardin-related transcription factors (MRTFs) play a central role in the regulation of actin expression and cytoskeletal dynamics. Stimuli that promote actin polymerization allow for shuttling of MRTFs to the nucleus where they activate serum response factor (SRF), a regulator of actin and other cytoskeletal protein genes. SRF is an essential regulator of skeletal muscle differentiation and numerous components of the muscle sarcomere, but the potential involvement of MRTFs in skeletal muscle development has not been examined. We explored the role of MRTFs in muscle development in vivo by generating mutant mice harboring a skeletal muscle-specific deletion of MRTF-B and a global deletion of MRTF-A. These double knockout (dKO) mice were able to form sarcomeres during embryogenesis. However, the sarcomeres were abnormally small and disorganized, causing skeletal muscle hypoplasia and perinatal lethality. Transcriptome analysis demonstrated dramatic dysregulation of actin genes in MRTF dKO mice, highlighting the importance of MRTFs in actin cycling and myofibrillogenesis. MRTFs were also necessary for the survival of skeletal myoblasts and for the efficient formation of intact myotubes. Our findings reveal a central role for MRTFs in sarcomere formation during skeletal muscle development and point to the potential involvement of these transcriptional coactivators in skeletal myopathies. Overall design: Gene expression profile was generated comparing wild type (WT) and HSA-Cre, MRTF-A/B double knockout mice, by deep seqencing, with three biological replicates, using Illumina HiSeq 2500.
Myocardin-related transcription factors are required for skeletal muscle development.
Specimen part, Subject
View SamplesThe fusion oncoprotein EWS-FLI1 arises from a t(11;22)(q24;q12) chromosomal translocation and causes Ewing's Sarcoma, a malignant bone tumor. The mechanism whereby EWS-FLI1 transforms cells is unknown. Somatic, mosaic expression of human EWS-FLI1 in zebrafish from the heat shock promoter [Tg(HSP:EWS-FLI1)] caused small round blue cell tumors (SRBCTs) similar to human Ewing's sarcoma.
A zebrafish transgenic model of Ewing's sarcoma reveals conserved mediators of EWS-FLI1 tumorigenesis.
Specimen part
View SamplesThe fusion oncoprotein EWS-FLI1 arises from a t(11;22)(q24;q12) chromosomal translocation and causes Ewing's Sarcoma, a malignant bone tumor. The mechanism whereby EWS-FLI1 transforms cells is unknown. We made germline transgenic zebrafish expressing human EWS-FLI1 under the control of the heat shock promoter. Induction of EWS-FLI1 expression causes multiple defects in embryonic development.
A zebrafish transgenic model of Ewing's sarcoma reveals conserved mediators of EWS-FLI1 tumorigenesis.
Specimen part
View SamplesAnaplastic large-cell lymphoma (ALCL) makes up approximately 15% of paediatric non-Hodgkin's lymphomas of childhood. The vast majority of them is associated with the t(2;5)(p23;q35) translocation that results in the expression of a hybrid oncogenic tyrosine kinase, NPM-ALK. In order to investigate ALCL biological characteristics we used transcriptional profiling approach. Genome-wide gene expression profiling, performed on 23 paediatric ALCL and 12 reactive lymph nodes specimens, showed two novel ALCL subgroups based on their NPM-ALK expression levels (named (ALK low and ALK high). Gene set enrichment analysis revealed, in ALK low samples, a positive enrichment of genes involved in the Interleukin signaling pathway, whereas we found increased expression of genes related to cell cycle progression and division in ALK high tumour samples, such as Aurora Kinase A (AURKA) and B (AURKB). Growth inhibition was observed upon administration of AURKA and AURKB inhibitors Alisertib and Barasertib and it was associated with perturbation of the cell cycle and induction of apoptosis. In conclusion we identified two novel ALCL subgroups, which display unique biological characteristics suggesting sensitivity to distinct targeted therapies.
NPM-ALK expression levels identify two distinct subtypes of paediatric anaplastic large cell lymphoma.
No sample metadata fields
View SamplesThe purpose of this experiment is to anlyze the transcriptomic changes associated with Notch inhibition, by DAPT treatment, during cardiac reprogramming mediated by GHMT (Gata4, Hand2, Mef2c anf Tbx5). Overall design: RNA-seq was performed on MEFs infected with GHMT (Gata4, Hand2, Mef2c anf Tbx5) and treated for 15 days with DMSO (vehicle) or DAPT.
Notch Inhibition Enhances Cardiac Reprogramming by Increasing MEF2C Transcriptional Activity.
Specimen part, Cell line, Treatment, Subject
View Samples