Treatment-related morbidities have been linked to the large post-operative treatment volumes required for external beam partial breast irradiation (PBI). Alternative PBI techniques require equipment that is not readily available. To address these issues, we designed a phase I trial utilizing widely available technology to 1) evaluate the safety of a single radiation treatment delivered preoperatively to the small-volume, intact breast tumor and 2) identify imaging and genomic markers of radiation response.
FAS Death Receptor: A Breast Cancer Subtype-Specific Radiation Response Biomarker and Potential Therapeutic Target.
Specimen part
View SamplesIntroduction: Breast radiotherapy is currently one size fits all regardless of breast cancer subtype (eg. luminal, basal). However, recent clinical data suggests that radiation response may vary significantly among subtypes. Therefore, current practice leads to over- or under-treatment of women whose tumors are more or less radiation responsive. We hypothesized that this clinical variability may be due, in part, to differences in cellular radiation response. Methods: We exposed 16 biologically-diverse breast tumor cell lines to 0 or 5GY radiation. Microarray analysis was performed on RNA harvested from those cell lines. Samples were run in triplicate. Following quality assessment, differential gene expression analysis was performed using a two-way multiplicative linear mixed-effects model. A candidate radiation response biomarkers with biologically plausible role in radiation response, were identified and confirmed at the RNA and protein level with qPCR and Western blotting assays. Induction in human breast tumors was confirmed in 32 patients with paired pre- and post-radiation tumor samples using IHC and microarray analysis. Quantification of protein was performed in a blinded manner and included positive and negative controls.
FAS Death Receptor: A Breast Cancer Subtype-Specific Radiation Response Biomarker and Potential Therapeutic Target.
Specimen part, Cell line
View SamplesThe aim of this experiment was measure the influence of age on cutaneous wound healing using human subjects. Increaded age has been associated with delayed wound healing in mouse models and in humans. Gene expression was compared between excisional biopsy wounds from young and old subjects.
Estrogen, not intrinsic aging, is the major regulator of delayed human wound healing in the elderly.
Sex, Age, Specimen part
View SamplesThe present study aimed to delineate the central mechanisms by which androgens delay wound repair. Blocking the conversion of testosterone to 5alpha-dihydrotestosterone (DHT) by 5alpha-reductase limits its ability to impair skin wound healing, suggesting that DHT is a more potent inhibitor of repair than is testosterone. This study aims to identify, through transcription profiling, potential mechanisms by which the 5alpha-reductase inhibitor MK-434 modulates repair. Microarray analysis of wound RNA samples from rats in which the transformation of testosterone to DHT is prevented has identified biological processes and key individual genes through which DHT may contribute to the altered healing profile in such animals. These include genes with putative roles in wound contraction and re-epithelialization.
5alpha-dihydrotestosterone (DHT) retards wound closure by inhibiting re-epithelialization.
Sex, Age, Specimen part, Compound
View SamplesThe aim of this experiment was to investigate the role of MIF during wound healing using BALB/C MIF null mice and in the context of reduced estrogen-associated impaired healing using ovariectomized mice (a mouse model of age-associated delayed healing). Ageing is associated with delayed cutaneous wound healing resulting from reduced estrogen levels. Macrophage migration inhibitory factor (MIF - NCBI RefSeq: NM_010798) is thought to mediate the effects of estrogen on wound healing. Gene expression was compared between wounds from ovariectomized MIF null mice and controls.
Macrophage migration inhibitory factor: a central regulator of wound healing.
Sex, Age, Specimen part, Subject
View SamplesUnderstanding the nature of the various glucose-derived signals for insulin secretion (both triggering and amplifying) is essential for gaining insight into the functional failure of the beta-cells in diabetes and the development of drugs for correcting this problem. The beta-cells uniquely couple changes in cellular metabolism to electrical activity and thus insulin release. In mice, beta-cell specific deletion of the von Hippel-Lindau (VHL) tumor suppressor protein leads to the activation of a HIF transcription program that includes genes involved in glycolysis, suppression of mitochondrial activity and lactate production. This reprogramming of cellular metabolism results in abnormal insulin secretion properties.
PVHL is a regulator of glucose metabolism and insulin secretion in pancreatic beta cells.
Sex, Age
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Competition between virus-derived and endogenous small RNAs regulates gene expression in Caenorhabditis elegans.
No sample metadata fields
View SamplesAnalysis of the transcriptional response to viral infection in C.elegans.
Competition between virus-derived and endogenous small RNAs regulates gene expression in Caenorhabditis elegans.
No sample metadata fields
View SamplesAttempt to identify small non-coding RNAs that change in levels as a result of viral infection of C.elegans Overall design: Small non-coding RNA (18-30nt) was extracted from animals either infected with Orsay virus or uninfected as indicated.
Competition between virus-derived and endogenous small RNAs regulates gene expression in Caenorhabditis elegans.
Cell line, Subject
View SamplesThe transition in developmental control from maternal to zygotic gene products marks a critical step in early embryogenesis. Here, we use GRO-seq analysis to map the genome-wide RNA polymerase distribution during the Drosophila maternal to zygotic transition. This analysis unambiguously identifies the zygotic transcriptome, and provides insight into its mechanisms of regulation. Overall design: Two replicates of GRO-seq at each time point.
Extensive polymerase pausing during Drosophila axis patterning enables high-level and pliable transcription.
Specimen part, Cell line, Subject, Time
View Samples