We examined genome-wide variation in transcription factor binding in different individuals and a chimpanzee using chromatin immunoprecipitation followed by massively-parallel sequencing (ChIP-Seq). The binding sites of RNA Polymerase II (Pol II) as well as a key regulator of immune responses, NFkB, were mapped in ten HapMap lymphoblastoid cell lines derived from individuals of African, European, and Asian ancestry, including a parent-offspring trio. We also mapped gene expression in all ten human cell lines for two treatment conditions: a) no treatment and b) following induction by TNF-alpha. Overall design: Genome-wide comparison of Pol II and NF-KappaB binding in ten individuals. RNA-seq study with no treatment.
Variation in transcription factor binding among humans.
No sample metadata fields
View SamplesWe examined genome-wide variation in transcription factor binding in different individuals and a chimpanzee using chromatin immunoprecipitation followed by massively-parallel sequencing (ChIP-Seq). The binding sites of RNA Polymerase II (Pol II) as well as a key regulator of immune responses, NFkB, were mapped in ten HapMap lymphoblastoid cell lines derived from individuals of African, European, and Asian ancestry, including a parent-offspring trio. We also mapped gene expression in all ten human cell lines for two treatment conditions: a) no treatment and b) following induction by TNF-alpha. Overall design: Genome-wide comparison of Pol II and NF-KappaB binding in ten individuals. RNA-seq study with TNF-alpha treatment.
Variation in transcription factor binding among humans.
No sample metadata fields
View SamplesThe molecular chaperons FK506-binding proteins (Fkbps) comprise one of three families of peptidyl prolyl isomerases, which promote the transition between cis- and trans-conformations of peptidyl prolyl bonds. Mouse Fkbp family is composed of at least 15 members, but the functions of the large family in cell proliferation and differentiation remain elusive. During myoblast differentiation, the cells need to exit the cell cycle before fusion and terminal differentiation to form myotubes. The clear distinction between proliferation and differentiation provides an ideal model with which to investigate the roles of Fkbps in these two cell biological events. We found that depletion of FkbpC in mouse myoblasts delayed the exit from the cell cycle and expression of myotube-specific genes, whereas its overexpression caused opposite effects. At a mechanistic level, our study revealed a crucial function of FkbpC in Cdk4 activation during myoblast proliferation. Cdk4 undergoes conformational changes in the HSP90/Cdc37/Cdk4 complex as a prerequisite for activation through binding to CyclinD1 accompanied by phosphorylation. Our results showed that FkbpC depletion released Cdk4 from the HSP90 complex, which increased the Cdk4/CyclinD1 complex in myoblasts and sustained high levels of phosphorylated Cdk4 and Rb during differentiation. These results explain the delayed cell cycle exit and differentiation in the depleted cells. In addition, after synchronizing the cell cycle of myoblasts we found dynamic changes of the amounts of FkbpC and Cdk4 in the HSP90 complex during the G1/S transition. Knockout mice of FkbpC demonstrated delayed muscle regeneration after chemical damage, providing an in vivo evidence for the essential role of FkbpC in muscle differentiation. Collectively, our study uncovered FkbpC's critical function as a novel switch regulating the transition from proliferation to differentiation through controlling one of the central regulators of proliferation, Cdk4. Overall design: mRNA profiles of Fkbp4 knockdown, Fkbp5 knockdown and control C2C12 cells at d0, d3 and d5 were generated by using Illumina HiSeq2500.
Promotion of Myoblast Differentiation by Fkbp5 via Cdk4 Isomerization.
Specimen part, Cell line, Subject, Time
View SamplesCircadian rhythms regulate cell proliferation and differentiation; however, little is known about their roles in myogenic differentiation. Our synchronized differentiation studies demonstrate that myoblast proliferation and subsequent myotube formation by cell fusion occur in circadian manners. We found that one of the core regulators of circadian rhythms Cry2, but not Cry1, is critical for the circadian patterns of these two critical steps in myogenic differentiation. This is achieved through the specific interaction between Cry2 and Bclaf1, which stabilizes mRNAs encoding cyclin D1, a G1/S phase transition regulator, and Tmem176b, a transmembrane regulator for myogenic cell fusion. Myoblasts lacking Cry2 display premature cell cycle exit and form short myotubes due to inefficient cell fusion. Consistently, muscle regeneration is impaired in Cry2-/- mice. Bclaf1 knockdown recapitulated the phenotypes of Cry2 knockdown: early cell cycle exit and inefficient cell fusion. This study uncovers a post-transcriptional regulation of myogenic differentiation by circadian rhythms. Overall design: mRNA profiles of Cry1 knockdown, Cry2 knockdown and control C2C12 cells at d0, d3 and d5 were generated by using Illumina HiSeq2500.
Cry2 Is Critical for Circadian Regulation of Myogenic Differentiation by Bclaf1-Mediated mRNA Stabilization of Cyclin D1 and Tmem176b.
Specimen part, Cell line, Subject
View Samples<Objective> To compare gene expression in labial salivary glands (LSG) of IgG4-related disease (IgG4-RD) with Sjgrens syndrome (SS).
DNA microarray analysis of labial salivary glands in IgG4-related disease: comparison with Sjögren's syndrome.
Sex, Specimen part
View SamplesRoles of mesothelial cells (MCs) are poorly understood during liver development and injury. We identified podoplanin (Pdpn) as a cell surface markers for mesothelial cells in E12.5 mouse developing liver.
Mesothelial cells give rise to hepatic stellate cells and myofibroblasts via mesothelial-mesenchymal transition in liver injury.
Specimen part
View SamplesAsymmetric cell division results in two distinctly fated daughter cells to generate cellular diversity. A major molecular hallmark of an asymmetric division is the unequal partitioning of cell-fate determinant proteins. We have previously established that growth factor signaling promotes protein depalmitoylation to foster polarized protein localization, which in turns drives migration and metastasis. Here, we report protein palmitoylation as a key mechanism for the asymmetric partitioning of the cell-fate determinants Numb (Notch antagonist) and ß-catenin (canonical Wnt regulator) through the activity of a depalmitoylating enzyme, APT1. Using point mutants, we show specific palmitoylated residues on proteins, such as Numb, are required for asymmetric localization. Furthermore, by live-cell imaging, we show that reciprocal interactions between APT1 and CDC42 regulate the asymmetric localization of Numb and ß-catenin to the plasma membrane. This in turn restricts Notch and Wnt transcriptional activity to one daughter cell. Moreover, we show altering APT1 expression changes the transcriptional signatures to those resembling that of Notch and ß-catenin in MDA-MB-231 cells. We also show loss of APT1 depletes the population of CD44+/CD24lo/ALDH+ tumorigenic cells in colony formation assays. Together, the findings of this study demonstrate that palmitoylation, via APT1, is a major mechanism of asymmetric cell division regulating Notch and Wnt-associated protein dynamics, gene expression, and cellular functions. Overall design: Gene expression by RNAseq of MDA-MB-231 triple receptor negative breast cancer cells expressing scramble control vector, shAPT1 knockdown, and APT1wt performed in triplicate. Total of 9 samples were analyzed.
The depalmitoylase APT1 directs the asymmetric partitioning of Notch and Wnt signaling during cell division.
Specimen part, Cell line, Treatment, Subject
View Samplesgene-expression change along with differentiation stage from human iPS cells to astrocytes is unkown.
Modeling Alzheimer's disease with iPSCs reveals stress phenotypes associated with intracellular Aβ and differential drug responsiveness.
Specimen part
View SamplesOligomeric forms of amyloid-beta peptide (Abeta) are presumed to play a pivotal role in the pathogenesis of Alzheimers disease (AD). However, it is still unclear how Abeta oligomers contribute to AD pathogenesis in patient neural cells. We generated induced pluripotent stem cells (iPSCs) from a familial AD patient and differentiated them into neural cells. Abeta oligomers were accumulated in neural cells of AD bearing amyloid precursor protein (APP)-E693delta mutation.
Modeling Alzheimer's disease with iPSCs reveals stress phenotypes associated with intracellular Aβ and differential drug responsiveness.
Specimen part
View SamplesMuscle satellite cells are a self-renewing pool of stem cells that give rise to daughter myogenic precursor cells in adult skeletal muscle. Published and preliminary data indicated that MyoD and p53 genes are involved in satellite cell differentiation. We would like to know what downstream genes of both transcription factors are affected in satellite cell-derived myoblasts (MyoD-/-, p53 -/-).
MyoD induces myogenic differentiation through cooperation of its NH2- and COOH-terminal regions.
No sample metadata fields
View Samples