refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 2535 results
Sort by

Filters

Technology

Platform

accession-icon GSE76899
Integrated Analysis of Dysregulated lncRNA and mRNA Expression profiles of myocardial sleevesof pulmonary veins in atrial fibrillation
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

Atrial fibrillation (AF) is currently the most prevalent arrhythmia worldwide.Recent clinical data implicate the additional contribution of non-coding RNAs in the pathogenesis of AFwhich include microRNAs(miRNAs), endogenous small interfering RNAs, PIWIinteracting RNAs, and lncRNA. Notably, a growing number of lncRNAs have been implicated in disease etiology, although an association with AF has not been reported.

Publication Title

No associated publication

Sample Metadata Fields

Sex

View Samples
accession-icon GSE22643
Expression data from stage 54 Xenopus laevis larvae treated with 20 nM triiodothyronine (T3)
  • organism-icon Xenopus laevis
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Xenopus laevis Genome Array (xenopuslaevis)

Description

Induction of Xenopus laevis larvae metamorphosis is dependent on exposure to TH. Metamorphosis involves the regression, growth or remodeling of almost all the tissues in the animals body.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE71361
The Transcriptome Responses of Cardiomyocyte Exposed to Hypothermia
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

Hypothermia affects the body in positive and negative consequences. In cardiac, hypothermia depresses myocardial contraction, slows conduction, and decreases metabolic rate. However, little is known about the molecular mechanism. Here we compare the genes expression of human adult ventricular cardiomyocyte cells (AC16) treated with hypothermia, trying to find changes under different temperatures and then elucidate the candidate genes that may play important roles in the response to hypothermia. A total of 2413 differentially expressed genes (DEGs) were identified by microarray hybridization, which provided abundant data for further analysis. Gene Ontology enrichment analysis revealed that genes related to gene transcriptions, protein and lipid metabolic were significantly enriched. KEGG analysis showed that DEGs were significantly enriched in TGF- pathway and cytokine-cytokine receptor interaction, which may play important roles in response to hypothermia. A set of TFs (CPBP, Churchill, NF-AT1, GKLF, SRY, ZNF333, ING4, myogenin, DRI1 and CRX) was recognized to be the functional layer of key nodes, which mapped the signal of hypothermia to transcriptome. These identified DEGs, pathways and predicted TF could facilitate further investigations of the detailed molecular mechanisms, making it possible to take advantage of the potential applications of hypothermia in broader ranger

Publication Title

No associated publication

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE17669
Gene expression in the barley spike during drought stress
  • organism-icon Hordeum vulgare
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Barley Genome Array (barley1)

Description

The photosynthetic organs of the barley spike (lemma, palea and awn) are resistant to drought. This is a beneficial trait because they can sustain grain-filling when drought occurs at the reproductive stage. There is little information about gene expression in the spike organs under drought conditions. In this study, we compared gene expression in drought-stressed lemma, palea, awn and seed at the grain-filling stage using the Barley1 Genome Array in order to identify drought-regulated organ-specific genes.

Publication Title

Drought response in the spikes of barley: gene expression in the lemma, palea, awn, and seed.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE16754
Comparative transcriptional profiling of organs of the barley spike
  • organism-icon Hordeum vulgare
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Barley Genome Array (barley1)

Description

The lemma, the palea and the awn of a barley spike are photosynthetic organs and supply the developing seed with carbohydrates. In addition, the lemma and the palea cover the seed and protect it from pathogens and insects. In this study, we compared gene expression among the lemma, the palea, the awn and the developing seed of barley at the grain-filling stage (Zadok scale 83) using the Barley1 Genome Array in order to identify genes that determine the primary function of these organs.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE6919
Expression Data from Normal and Prostate Tumor Tissues
  • organism-icon Homo sapiens
  • sample-icon 503 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95A Array (hgu95a), Affymetrix Human Genome U95B Array (hgu95b), Affymetrix Human Genome U95C Array (hgu95c)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process.

Sample Metadata Fields

Age, Specimen part, Race

View Samples
accession-icon GSE6606
Expression data from Primary Prostate Tumor
  • organism-icon Homo sapiens
  • sample-icon 196 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95C Array (hgu95c), Affymetrix Human Genome U95A Array (hgu95a), Affymetrix Human Genome U95B Array (hgu95b)

Description

Prostate cancer is characterized by heterogeneity in the clinical course that often does not to correlate with morphologic features of the tumor. Metastasis reflects the most adverse outcome of prostate cancer, and to date there are no reliable morphologic features or serum biomarkers that can reliably predict which patients are at higher risk of developing metastatic disease. Understanding the differences in the biology of metastatic and organ confined primary tumors is essential for developing new prognostic markers and therapeutic targets. Using Affymetrix oligonucleotide arrays, we analyzed gene expression profiles of 24 androgen-ablation resistant metastatic samples obtained from 4 patients and a previously published dataset of 64 primary prostate tumor samples. Differential gene expression was analyzed after removing potentially uninformative stromal genes, addressing the differences in cellular content between primary and metastatic tumors. The metastatic samples are highly heterogeneous in expression; however, differential expression analysis shows that 415 genes are upregulated and 364 genes are downregulated at least 2 fold in every patient with metastasis. The expression profile of metastatic samples reveals changes in expression of a unique set of genes representing both the androgen ablation related pathways and other metastasis related gene networks such as cell adhesion, bone remodeling and cell cycle. The differentially expressed genes include metabolic enzymes, transcription factors such as Forkhead Box M1 (FoxM1) and cell adhesion molecules such as Osteopontin (SPP1). We hypothesize that these genes have a role in the biology of metastatic disease and that they represent potential therapeutic targets for prostate cancer.

Publication Title

Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE6608
Expression data from Normal Prostate Tissue Adjacent to Tumor
  • organism-icon Homo sapiens
  • sample-icon 181 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95B Array (hgu95b), Affymetrix Human Genome U95A Array (hgu95a), Affymetrix Human Genome U95C Array (hgu95c)

Description

Prostate cancer is characterized by heterogeneity in the clinical course that often does not to correlate with morphologic features of the tumor. Metastasis reflects the most adverse outcome of prostate cancer, and to date there are no reliable morphologic features or serum biomarkers that can reliably predict which patients are at higher risk of developing metastatic disease. Understanding the differences in the biology of metastatic and organ confined primary tumors is essential for developing new prognostic markers and therapeutic targets. Using Affymetrix oligonucleotide arrays, we analyzed gene expression profiles of 24 androgen-ablation resistant metastatic samples obtained from 4 patients and a previously published dataset of 64 primary prostate tumor samples. Differential gene expression was analyzed after removing potentially uninformative stromal genes, addressing the differences in cellular content between primary and metastatic tumors. The metastatic samples are highly heterogeneous in expression; however, differential expression analysis shows that 415 genes are upregulated and 364 genes are downregulated at least 2 fold in every patient with metastasis. The expression profile of metastatic samples reveals changes in expression of a unique set of genes representing both the androgen ablation related pathways and other metastasis related gene networks such as cell adhesion, bone remodeling and cell cycle. The differentially expressed genes include metabolic enzymes, transcription factors such as Forkhead Box M1 (FoxM1) and cell adhesion molecules such as Osteopontin (SPP1). We hypothesize that these genes have a role in the biology of metastatic disease and that they represent potential therapeutic targets for prostate cancer.

Publication Title

Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE6605
Expression data from Metastatic Prostate Tumor
  • organism-icon Homo sapiens
  • sample-icon 74 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95A Array (hgu95a), Affymetrix Human Genome U95C Array (hgu95c), Affymetrix Human Genome U95B Array (hgu95b)

Description

Prostate cancer is characterized by heterogeneity in the clinical course that often does not to correlate with morphologic features of the tumor. Metastasis reflects the most adverse outcome of prostate cancer, and to date there are no reliable morphologic features or serum biomarkers that can reliably predict which patients are at higher risk of developing metastatic disease. Understanding the differences in the biology of metastatic and organ confined primary tumors is essential for developing new prognostic markers and therapeutic targets. Using Affymetrix oligonucleotide arrays, we analyzed gene expression profiles of 24 androgen-ablation resistant metastatic samples obtained from 4 patients and a previously published dataset of 64 primary prostate tumor samples. Differential gene expression was analyzed after removing potentially uninformative stromal genes, addressing the differences in cellular content between primary and metastatic tumors. The metastatic samples are highly heterogeneous in expression; however, differential expression analysis shows that 415 genes are upregulated and 364 genes are downregulated at least 2 fold in every patient with metastasis. The expression profile of metastatic samples reveals changes in expression of a unique set of genes representing both the androgen ablation related pathways and other metastasis related gene networks such as cell adhesion, bone remodeling and cell cycle. The differentially expressed genes include metabolic enzymes, transcription factors such as Forkhead Box M1 (FoxM1) and cell adhesion molecules such as Osteopontin (SPP1). We hypothesize that these genes have a role in the biology of metastatic disease and that they represent potential therapeutic targets for prostate cancer.

Publication Title

Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE6604
Expression data from Normal Prostate Tissue free of any pathological alteration
  • organism-icon Homo sapiens
  • sample-icon 52 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95B Array (hgu95b), Affymetrix Human Genome U95C Array (hgu95c), Affymetrix Human Genome U95A Array (hgu95a)

Description

Prostate cancer is characterized by heterogeneity in the clinical course that often does not to correlate with morphologic features of the tumor. Metastasis reflects the most adverse outcome of prostate cancer, and to date there are no reliable morphologic features or serum biomarkers that can reliably predict which patients are at higher risk of developing metastatic disease. Understanding the differences in the biology of metastatic and organ confined primary tumors is essential for developing new prognostic markers and therapeutic targets. Using Affymetrix oligonucleotide arrays, we analyzed gene expression profiles of 24 androgen-ablation resistant metastatic samples obtained from 4 patients and a previously published dataset of 64 primary prostate tumor samples. Differential gene expression was analyzed after removing potentially uninformative stromal genes, addressing the differences in cellular content between primary and metastatic tumors. The metastatic samples are highly heterogeneous in expression; however, differential expression analysis shows that 415 genes are upregulated and 364 genes are downregulated at least 2 fold in every patient with metastasis. The expression profile of metastatic samples reveals changes in expression of a unique set of genes representing both the androgen ablation related pathways and other metastasis related gene networks such as cell adhesion, bone remodeling and cell cycle. The differentially expressed genes include metabolic enzymes, transcription factors such as Forkhead Box M1 (FoxM1) and cell adhesion molecules such as Osteopontin (SPP1). We hypothesize that these genes have a role in the biology of metastatic disease and that they represent potential therapeutic targets for prostate cancer.

Publication Title

Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process.

Sample Metadata Fields

Age, Specimen part, Race

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact