The objective of this experiment was to determine global gene expression change in triple negative cell line upon knockdown of TGFBR3. Genotype specific differences in expression profiles have been evaluated using human HuGene1.0-ST affymetrix array. RNA was extracted from SUM159 controls and SUM159 TGFBR3KD cells cultured in 3-dimensional in vitro system.
Transforming growth factor beta receptor type III is a tumor promoter in mesenchymal-stem like triple negative breast cancer.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Integrative epigenome-wide analysis demonstrates that DNA methylation may mediate genetic risk in inflammatory bowel disease.
Sex, Age, Specimen part, Subject
View SamplesEpigenetic alterations may provide important insights into gene-environment interaction in inflammatory bowel disease (IBD). Here we observe epigenome-wide DNA methylation differences in 240 newly-diagnosed IBD cases and 190 controls. These include 439 differentially methylated positions (DMPs) and 5 differentially methylated regions (DMRs), which we study in detail using whole genome bisulphite sequencing. We replicate the top DMP (RPS6KA2) and DMRs (VMP1, ITGB2, TXK) in an independent cohort.
Integrative epigenome-wide analysis demonstrates that DNA methylation may mediate genetic risk in inflammatory bowel disease.
Sex, Age, Specimen part
View SamplesNorwalk virus (NV) is a prototype strain of the noroviruses (family Caliciviridae) which have emerged as major causes of acute gastroenteritis worldwide. We have developed NV replicon systems using reporter proteins such as a neomycin resistant protein (NV replicon-bearing cells) and a green fluorescent protein (pNV-GFP), and demonstrated that these systems were excellent tools to study virus replication in cell culture. In this study, we first performed DNA microarray analysis of the replicon-bearing cells to identify cellular factors associated with NV replication. The analysis demonstrated that genes in lipid (cholesterol) or carbohydrate metabolic pathways were significantly (p< 0.001) changed by the gene ontology analysis. Among genes in the cholesterol pathways, we found that mRNA levels of hydroxymethylglutaryl-CoA (HMG-CoA) synthase, squalene epoxidase and acyl-CoA:cholesterol acyltransferase(ACAT) 1, ACAT 2, small heterodimer partner, and low density lipoprotein receptor (LDLR)-related proteins were significantly changed in the cells.
Role of cholesterol pathways in norovirus replication.
Specimen part
View SamplesOxidative injury and inflammation have been implicated in the genesis of hypertension but the mechanisms involved are not fully understood. We describe a new pathway in which angiotensin II promotes dendritic cell (DC) activation of T cells and ultimately hypertension. NADPH oxidase-dependent superoxide production is increased 5-fold in DCs isolated from hypertensive mice as compared to sham-treated mice. This is associated with DC accumulation of protein-isoketal adducts and production of IL-6, IL-1 and IL-23. DCs from hypertensive mice but not sham mice promote survival and proliferation of CD8+ T cells in culture. Chemically diverse isoketal scavengers not only prevent activation and immunogenicity of DCs, but also attenuate angiotensin II-induced hypertension. Moreover, adaptive transfer of DCs from hypertensive mice prime development of hypertension in response to a subpressor dose of angiotensin II. Exposure of DCs to tert butyl hypdroperoxide promoted isoketal formation, DC stimulation of CD8+ T cell proliferation and primed hypertension in response to low dose angiotensin II. Serum isoprostanes, precursors to isoketals, were found to be elevated in humans with treated hypertension and were markedly elevated in patients with resistant hypertension. These studies show that angiotensin II-induced hypertension activates DCs, in large part by causing superoxide production and formation of isoketals. They define a new mechanism of hypertension and identify a potential new therapeutic approach for this disease.
DC isoketal-modified proteins activate T cells and promote hypertension.
Age, Specimen part
View SamplesVascular smooth muscle cells (VSMCs) are derived from distinct embryonic origins. Vessels originating from differing smooth muscle cell populations have distinct vascular and pathological properties of calcification, atherosclerosis, and structural defects such as aneurysm and coarctation. We hypothesized that domains within a vessel vary in phenotype based on embryonic origin.
No associated publication
Age, Specimen part
View SamplesThe ductus arteriosus (DA) is a fetal vascular shunt that is located between the main pulmonary artery and the aorta. Oxygenated fetal blood from the placenta is shunted past the uninflated fetal lungs, crosses the DA, and is then available to the peripheral organs. In utero closure of the DA is deleterious, but postnatal closure of the DA is necessary for establishment of pulmonary circulation and the transition to newborn life.
Transcriptional profiling reveals ductus arteriosus-specific genes that regulate vascular tone.
Specimen part
View SamplesWe are comparing differential gene expression in WT vs. CENPF knockout hearts
No associated publication
Age, Specimen part
View SamplesVascular smooth muscle cells (VSMCs) are derived from distinct embryonic origins. Vessels originating from differing smooth muscle cell populations have distinct vascular and pathological properties of calcification, atherosclerosis, and structural defects such as aneurysm and coarctation. We hypothesized that domains within a vessel vary in phenotype based on embryonic origin.
No associated publication
Age, Specimen part
View SamplesMesothelia, which cover all coelomic organs and body cavities in vertebrates, perform diverse functions in embryonic and adult life. Yet, mesothelia are traditionally viewed as simple, uniform epithelia.
Autotaxin signaling governs phenotypic heterogeneity in visceral and parietal mesothelia.
Specimen part
View Samples