We quantified differential gene (mRNA) expression in human coronary artery cells treated with native HDL, reconstituted HDL, lipid-free apolipoprotein A-I, small unilamellar vesicles, or PBS control.
HDL-transferred microRNA-223 regulates ICAM-1 expression in endothelial cells.
Specimen part
View SamplesWild-type c57Bl/6 mice were placed on high-fat diet (21% fat) for 3 weeks, and total RNA from liver was used for affymetrix microarray analysis. Data were analyzed using GeneSpring GX12.0.
No associated publication
No sample metadata fields
View SamplesHyperactivation of phosphatidylinositol-3 kinase (PI3K) promotes escape from hormone dependence in estrogen receptor-positive breast cancer.
Hyperactivation of phosphatidylinositol-3 kinase promotes escape from hormone dependence in estrogen receptor-positive human breast cancer.
Specimen part, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
ERα-dependent E2F transcription can mediate resistance to estrogen deprivation in human breast cancer.
Specimen part, Cell line, Treatment
View SamplesA significant fraction of breast cancers exhibit de novo or acquired resistance to estrogen deprivation. To model resistance to aromatase inhibitor (AI) therapy, long-term estrogen-deprived (LTED) derivatives of MCF-7 and HCC-1428 cells were generated through culture for 3 and 7 months under hormone-depleted conditions, respectively. These LTED cells showed sensitivity to the ER downregulator fulvestrant under hormone-depleted conditions, suggesting continued dependence upon ER signaling for hormone-independent growth. To evaluate the role of ER in hormone-independent growth, LTED cells were treated +/- 1 uM fulvestrant x 48 h before RNA was harvested for gene expression analysis.
ERα-dependent E2F transcription can mediate resistance to estrogen deprivation in human breast cancer.
Specimen part, Cell line, Treatment
View SamplesA significant fraction of breast cancers exhibit de novo or acquired resistance to estrogen deprivation.
A kinome-wide screen identifies the insulin/IGF-I receptor pathway as a mechanism of escape from hormone dependence in breast cancer.
Cell line, Treatment
View SamplesAtrial fibrillation (AF) is a progressive arrhythmia for which current therapy is inadequate. During AF, rapid stimulation causes atrial remodeling that promotes further AF. The cellular signals that trigger this process remain poorly understood, however, and elucidation of these factors would likely identify new therapeutic targets. We have previously shown that immortalized mouse atrial (HL-1) myocytes subjected to 24 hr of rapid stimulation in culture undergo remodeling similar to that seen in animal models of atrial tachycardia (AT) and human AF. This preparation is devoid of confounding in vivo variables that can modulate gene expression (e.g., hemodynamics). Therefore, we investigated the transcriptional profile associated with early atrial cell remodeling. RNA was harvested from HL-1 cells cultured for 24 hr in the absence and presence of rapid stimulation and subjected to microarray analysis. Data were normalized using Robust Multichip Analysis (RMA), and genes exhibiting significant differential expression were identified using the Significance Analysis of Microarrays (SAM) method. Using this approach, 919 genes were identified that were significantly altered with rapid stimulation (763 up-regulated and 156 down-regulated). For many individual transcripts, changes typical of AF/AT were observed, with marked up-regulation of genes encoding BNP and ANP precursors, heat shock proteins, and MAP kinases, while novel signaling pathways and molecules were also identified. Both stress and survival response were evident, as well as up-regulation of multiple transcription factors. Genes were also functionally classified based on cellular component, biologic process, and molecular function using the Gene Ontology database to permit direct comparison of our data with other gene sets regulated in human AF and experimental AT. For broad categories of genes grouped by functional classification, there was striking conservation between rapidly stimulated HL-1 cells and AF/AT. Results were confirmed using real-time quantitative RT-PCR on 13 genes selected by physiological relevance in AF/AT and regulation in the microarray analysis (up, down, and nonregulated). Rapidly-stimulated atrial myocytes provide a complementary experimental paradigm to explore the initial cellular signals in AT remodeling to identify novel targets in the treatment of AF.
Transcriptional remodeling of rapidly stimulated HL-1 atrial myocytes exhibits concordance with human atrial fibrillation.
No sample metadata fields
View SamplesL-Arginine (L-Arg) is the substrate for both inducible nitric oxide synthase and arginase, which are upregulated in human IBD and in mouse colitis models. We have found that L-Arg supplementation enhances wound restitution in vitro, and improves the clinical parameters of weight loss, survival, and colon weight/length, in dextran sulfate sodium (DSS) induced murine colitis. Our aim was to further identify the potential mechanisms underlying the clinical benefit of L-Arg supplementation.
L-arginine supplementation improves responses to injury and inflammation in dextran sulfate sodium colitis.
Sex, Age, Specimen part
View SamplesMutations of the transcriptional regulator Mecp2 cause the X-linked autism spectrum disorder Rett syndrome (RTT), and Mecp2 has been implicated in several other neurodevelopmental disorders. To identify potential target genes regulated directly or indirectly by MeCP2, we performed comparative gene expression analysis via oligonucleotide microarrays on Mecp2-/y (Mecp2-null) and wild-type CPN purified via fluorescence-activated cell sorting (FACS).
Reduction of aberrant NF-κB signalling ameliorates Rett syndrome phenotypes in Mecp2-null mice.
Specimen part
View SamplesMounting evidence points to a link between a cancer possessing stem-like properties and a worse prognosis. To understand the biology, a common approach is to integrate network biology with signal processing mechanics. That said, even with the right tools, predicting the risk for a highly susceptible target using only a handful of gene signatures remains very difficult. By compiling the expression profiles of a panel of tumor stem-like cells (TSLCs) originating in different tissues, comparing these to their parental tumor cells (PTCs) and the human embryonic stem cells (hESCs), and integrating network analysis with signaling mechanics, we propose that network topologically-weighted signaling processing measurements under tissue-specific conditions can provide scalable and predicable target identification.
Network biology of tumor stem-like cells identified a regulatory role of CBX5 in lung cancer.
Specimen part
View Samples