Reliable identification of cancer markers can have substantial implications to early detection of cancer. We report here an integrated computational and experimental study on identification of gastric cancer markers in patients tissue and sera based on (i) genome-scale transcriptomic analyses on 80 paired gastric cancer/reference tissues, with the aim of identifying abnormally expressed genes at various subtypes/stages of gastric carcinoma (ii) a computational identification of differentially expressed genes that may have their proteins secreted into blood circulation, followed by experimental validations.
An integrated transcriptomic and computational analysis for biomarker identification in gastric cancer.
Sex, Age, Specimen part, Disease stage
View SamplesPerchlorate, which is a ubiquitous and persistent ion, competitively interferes with iodide accumulation in the thyroid, causing iodine deficiency, which may result in reduced thyroid hormone synthesis and secretion. Human studies suggest that perchlorate presents very little risk in healthy individuals; however, the precautionary principle demands that the sensitive populations of iodine deficient adults and mothers require extra consideration. In an attempt to determine if the effects on gene expression were similar, we compared the thyroidal effects of perchlorate (10 mg/kg) treatment for 14 days in drinking water with those caused by 8 weeks of Iodine-deficiency in rats. The thyroids were collected (N=3 each group) and total mRNA was analyzed using the Affymetrix Rat Genome 230 2.0 GeneChip. Changes in gene expression were compared with appropriate control groups. We compared the 2-fold gene changes due to I-deficiency with changes due to perchlorate treatment. 189 transcripts were changed by the Iodine-deficient diet and 722 transcripts were changed by the perchlorate treatment. 34% of the transcripts changed by the I-deficient diet were also changed by perchlorate and generally in the same direction. three specific transporter genes, AQP1, NIS, & SLC22A3 were changed by both treatments, indicating that the membrane specific changes were similar. Iodine-deficiency primarily caused changes in retinol and calcium signaling pathways and perchlorate primarily caused changes related to the accumulation of extracellular matrix proteins. This study provides evidence that perchlorate, at least at this dose level, changes more genes and changes different genes compared to iodine deficiency.
No associated publication
Sex, Specimen part, Time
View SamplesWe are studying signaling pathways and growth properties of cultured human ovarian cancer cells that are expressing the G protein-coupled receptor, luteinizing hormone receptor (LHR),particularly interested in the changes that occur when the receptor is activated by its cognate ligand, gonadotropin (LH). To investigate these questions, we have employed the SKOV3 ovarian cancer cell line that has been stably transfected with LHR, and can then test the response of these cells in culture following exposure to LH.
Regulation of gene expression in ovarian cancer cells by luteinizing hormone receptor expression and activation.
Cell line, Treatment, Time
View SamplesA genomic expression comparison was done among neural progenitor cells cultured on 2D substrates, 3D porous polystyrene scaffolds, and as 3D neural spheres (in vivo surrogate), with the goal of assessing the feasibility of establishing the meaning of 3D and associated physiological relevance at the molecular level
No associated publication
No sample metadata fields
View SamplesThe objective of this study was to decipher the molecular basis of feed efficiency in meat-type chicken using duodenum tissues from a chicken population divergently selected for residual feed intake (RFI). Residual feed intake is the deviation of expected feed intake from actual feed intake. Chickens that consume less feed than expected are efficient (LRFI) and chickens that consume more feed than expected are inefficient (HRFI). A divergent selection for RFI was undertaken using an unselected random bred chicken population. RFI at day 35-42 was used as a criterion for selecting low (LRFI) and high (HRFI) RFI. Duodenum tissues were collected from 16 male chickens under sterile conditions experimentation. Tissues were collected from 4 males at days 35 and 42 in each line.
Transcriptomic analysis to elucidate the molecular mechanisms that underlie feed efficiency in meat-type chickens.
Specimen part
View SamplesA transcriptomic expression comparison was done among superior cervical ganglion (SCG) cells cultured on 2D substrates, 3D porous polystyrene scaffolds, and in freshly dissected tissue (in vivo surrogate), with the goal of assessing the feasibility of establishing the meaning of 3D and associated physiological relevance at the molecular level
No associated publication
Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Nucleosome positioning changes during human embryonic stem cell differentiation.
Specimen part, Cell line
View SamplesHeparan sulfate (HS) is a linear, sulfated polysaccharide, and expresses abundantly in prostate and PCa tissues. Intriguingly, the HS content and sulfation modifications appear to increase when the prostate becomes malignance, suggesting that HS may critically modulate PCa pathogenesis.
No associated publication
Age, Specimen part
View SamplesThis study was to find genes directly regulated by SND1 and VND7.
Global analysis of direct targets of secondary wall NAC master switches in Arabidopsis.
Treatment
View SamplesNucleosomes are the basic unit of chromatin. Nucleosome positioning (NP) plays a key role in transcriptional regulation and other biological processes. To better understand NP we used MNase-seq to investigate changes that occur as human embryonic stem cells (hESCs) transition to nascent mesoderm and then to smooth muscle cells (SMCs). Compared to differentiated cell derivatives, nucleosome occupancy at promoters and other notable genic sites, such as exon/intron junctions and adjacent regions, in hESCs shows a stronger correlation with transcript abundance and is less influenced by sequence content. Upon hESC differentiation, genes being silenced, but not genes being activated, display a substantial change in nucleosome occupancy at their promoters. Genome-wide, we detected a shift of NP to regions of higher G+C content as hESCs differentiate to SMCs. Notably, genomic regions with higher nucleosome occupancy harbor twice as many GC changes but fewer than half AT changes, compared to regions with lower nucleosome occupancy. Finally, our analysis indicates that the hESC genome is not rearranged and has a sequence mutation rate resembling normal human genomes. Our study reveals another unique feature of hESC chromatin, and sheds light on the relationship between nucleosome occupancy and sequence G+C content.
Nucleosome positioning changes during human embryonic stem cell differentiation.
Specimen part, Cell line
View Samples