In this study three Indian rhesus macaques were infected with Simian Immunodeficiency Virus (SIVmac251). This generates a chronic infection mirroring AIDS in the animals. Prior to infection (day 0) and at two different time-points post-infection (day 21 and day 90), intestinal resection biopsies were performed. The intestinal tissue was then separated into different sub-sections including lamina-propria lymphocytes (LPL), intra-epithelial lymphocytes (IEL), stroma or matrix and epithelium. In this study we report the genome-wide transcriptional response at the two different time-points, specific to LPL, relative to pre-infection samples. For this purpose we have used the Affymetrix Rhesus Macaque GeneChip.
No associated publication
Specimen part, Subject, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
No associated publication
Specimen part, Treatment, Subject, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Protection afforded by an HIV vaccine candidate in macaques depends on the dose of SIVmac251 at challenge exposure.
Specimen part
View SamplesCD8+ T-cells inhibit virus replication in SIV-infected rhesus macaques (RM). However, it is unclear to what extent the viral suppression mediated by CD8+ T-cells reflects direct killing of infected cells as opposed to indirect, non-cytolytic mechanisms. In this study, we used functional genomics to investigate potential mechanisms of in vivo viral suppression mediated by CD8+ lymphocytes. Eight chronically SIVmac239-infected RMs underwent CD8+ lymphocyte depletion, and RNA from whole blood was obtained prior to depletion, at the nadir of CD8+ lymphocytes (5 days post-depletion), and during the repopulation phase (11 days post-depletion). Principal components analysis demonstrated that overall gene expression during the nadir of CD8+ T-cells was highly divergent from other intervals. Conversely, the genomic signature of samples from the CD8+ cell rebound phase was similar to that of pre-depletion samples. During CD8+ lymphocyte depletion we detected a strongly significant decrease in the expression of the genes encoding CD8 and CD8 chains, consistent with the near complete CD8+ T-cell depletion measured by flow cytometry. Of note, we observed significant down-regulation of the expression of genes encoding for factors that can suppress SIV replication, including the CCR5-binding chemokine CCL5/Rantes, several retroviral restriction factors (TRIM10, TRIM15, APOBEC3G/H) and defensins. Reduced expression of various genes related to T cell activation and proliferation was also observed. Collectively, these data indicate that depletion of CD8+ lymphocytes in SIV-infected RMs is associated with the establishment of a pattern of gene expression that may result in increased intrinsic permissivity to virus replication.
Transcriptional profiling of experimental CD8(+) lymphocyte depletion in rhesus macaques infected with simian immunodeficiency virus SIVmac239.
No sample metadata fields
View SamplesACTG A5258, we asked whether chloroquine could reduce the immune activation in HIV infection posited to be driven by microbial TLR agonists, such as bacterial elements translocated from the gut and HIV-1 RNAs . We anticipate that blocking this activation pathway might interfere with events in pathogenesis leading to AIDS- and non-AIDS-related clinical manifestations of HIV disease.
No associated publication
Specimen part, Treatment, Subject, Time
View SamplesACTG A5258, we asked whether chloroquine could reduce the immune activation in HIV infection posited to be driven by microbial TLR agonists, such as bacterial elements translocated from the gut and HIV-1 RNAs . We anticipate that blocking this activation pathway might interfere with events in pathogenesis leading to AIDS- and non-AIDS-related clinical manifestations of HIV disease.
No associated publication
Specimen part, Treatment, Subject, Time
View SamplesThe SIVmac251 macaque model has been used to evaluate the efficacy of vaccine for HIV. Exposure of macaques to a single high dose of SIVmac251 results in transmission of multiple viral variants, which contrasts the few HIV variants typically transmitted in humans. In here, we investigated whether the dose of SIVmac251 challenge affected vaccination efficacy and found that exposure of the immunized macaques to single high dose of SIVmac251 resulted in no vaccine efficacy, whereas exposure to a tenfold lower dose resulted in protection from SIVmac251 acquisition and protection from disease in animals that become infected. The dose of challenge did not affect the expression of inflammatory genes in the gut in acute infection, but at set point, a significant down regulation of interferon responsive genes and up regulation of genes involved in B and T-cell responses, was observed only in vaccinated animals exposed to a lower dose of SIVmac251. Accordingly, in these animals, we also found a significant correlation with vaccine induced T-cell responses and protection from disease. These data demonstrate that the evaluation of the efficacy of vaccine candidates for HIV relies on accurate modeling in macaques to better mimic HIV transmission to humans.
Protection afforded by an HIV vaccine candidate in macaques depends on the dose of SIVmac251 at challenge exposure.
Specimen part
View SamplesThe LH-like molecule chorionic gonadotropin (CG) is secreted by the macaque conceptus during and following implantation, rescuing the CL from impending regression and extending its functional lifespan in early pregnancy for approximately two weeks. CG binds to the same receptor as LH; i.e., LHCGR, and promotes production of steroids and other factors such as relaxin (RLN1). Our research group recently used Affymetrix rhesus macaque total genome arrays to compare the effects of CG on the luteal transcriptome from rhesus females during simulated early pregnancy (SEP) with changes during luteal regression in the non-fecund menstrual cycle. This analysis demonstrated that CG-rescue affected expression levels of 4,500 mRNA transcripts between days 10 and 15 of the luteal phase. Previous analyses indicated that a portion of the transcriptome in the macaque CL of the menstrual cycle was regulated indirectly by LH via the local actions of steroid hormones, including progesterone (P). Therefore, this study was designed to distinguish CG-regulated luteal genes that are dependent versus independent of local steroid (P) action. A protocol of increasing dosages of hCG (SEP) was begun on day 9 of the luteal phase in rhesus females combined with concurrent administration of the 3BHSD inhibitor trilostane (TRL) +/- the synthetic progestin (P) R5020. CL were collected on day 10 (no treatment) of the luteal phase to serve as a baseline comparison (n=8), 1 day of SEP (Day 10+hCG+/-TRL+/-R5020) and 6 days of SEP (Day 15+hCG+/-TRL+/-R5020); n=4/group. In the presence of CG, treatment with TRL reduced serum P levels to less than 1 ng/ ml after 1 day and all of the Day 15+h+TRL-treated females initiated menses before CL collection. The isolated CL were processed for total RNA and hybridized to microarrays. Compared to hCG treatment alone, 50 significantly altered mRNA transcripts were identified on day 10, rising to 95 on day 15 (P<0.05, 2-fold change in gene expression). The mRNA levels for several genes were validated in CL by real-time PCR. RNL1 levels increased with CG-treatment, but were not affected by steroid ablation, similar to previously reported relaxin protein expression. Steroid-sensitive genes included CDH11, IL1RN, INSL3, LDLR, OPA1, SERPINE1, SFRP4, and TNSF13B1; however differential sensitivity was observed and effects of steroid ablation and P replacement varied by day. Expression of some genes (e.g., 3BHSD2, ADAMTS1, ADAMTS5, MMP9, STAR, and VEGFA) previously identified as steroid regulated in the macaque CL during the menstrual cycle were not significantly altered by steroid ablation and P replacement during CG exposure in SEP. These data indicate that the majority of CG-regulated luteal transcripts are differentially expressed independently of local steroid actions. The proportion of steroid sensitive mRNA transcripts in the presence of CG is much smaller than in the presence of LH during the non-fecund cycle. Nevertheless, the steroid-regulated genes in the macaque CL may be essential during early pregnancy, based on the previous report that TRL treatment initiates premature structural regression of the CL during SEP. These data reinforce the concept that the structure, function, and regulation of the rescued CL in early pregnancy is different from the CL of the menstrual cycle.
Effects of steroid ablation and progestin replacement on the transcriptome of the primate corpus luteum during simulated early pregnancy.
Sex, Specimen part
View SamplesThe SIVmac251 macaque model has been used to evaluate the efficacy of vaccine for HIV. Exposure of macaques to a single high dose of SIVmac251 results in transmission of multiple viral variants, which contrasts the few HIV variants typically transmitted in humans. In here, we investigated whether the dose of SIVmac251 challenge affected vaccination efficacy and found that exposure of the immunized macaques to single high dose of SIVmac251 resulted in no vaccine efficacy, whereas exposure to a tenfold lower dose resulted in protection from SIVmac251 acquisition and protection from disease in animals that become infected. The dose of challenge did not affect the expression of inflammatory genes in the gut in acute infection, but at set point, a significant down regulation of interferon responsive genes and up regulation of genes involved in B and T-cell responses, was observed only in vaccinated animals exposed to a lower dose of SIVmac251. Accordingly, in these animals, we also found a significant correlation with vaccine induced T-cell responses and protection from disease. These data demonstrate that the evaluation of the efficacy of vaccine candidates for HIV relies on accurate modeling in macaques to better mimic HIV transmission to humans.
Protection afforded by an HIV vaccine candidate in macaques depends on the dose of SIVmac251 at challenge exposure.
Specimen part
View SamplesThis study was designed to provide a genome-wide analysis of the effects of luteinizing hormone (LH) ablation/replacement versus steroid ablation/replacement on gene expression in the developed corpus luteum (CL) in primates during the menstrual cycle. Naturally cycling, female rhesus monkeys were left untreated (Control; n = 4) or received one of the following treatments for three days beginning on Day 9 of the luteal phase: daily injection of the gonadotropin-releasing hormone (GnRH) antagonist (Antide; n = 5), Antide + recombinant human LH (A+LH; n = 4), Antide + LH + the 3b-HSD antagonist Trilostane (A+LH+TRL; n = 4), and Antide + LH + TRL + progesterone replacement with a synthetic progestin R5020 (A+LH+TRL+ R5020; n = 5). On Day 12 of the luteal phase, CL were removed and samples of RNA from individual CL were fluorescently labeled and hybridized to Affymetrix rhesus macaque total genome microarrays. The greatest number of altered transcripts was associated with the ablation/replacement of LH, while ablation/replacement of progestin affected fewer transcripts. Replacement of LH during Antide treatment restored expression of most transcripts to control levels. Real-time PCR validation of a subset of transcripts revealed that most expression patterns were similar between microarray and real-time PCR. Analysis of protein levels were subsequently determined for 2 of the transcripts differentially expressed by real-time PCR. This is the first genome-wide analysis of LH and steroid regulation of gene transcription in the developed primate CL. Further analysis of novel transcripts identified in this data set can clarify the relative role for LH and steroids in CL maintenance and luteolysis.
The effects of luteinizing hormone ablation/replacement versus steroid ablation/replacement on gene expression in the primate corpus luteum.
No sample metadata fields
View Samples