Rhabdoid tumors (RT) are aggressive tumors characterized by genetic loss of SMARCB1 (SNF5, INI-1), a component of the SWI/SNF chromatin remodeling complex. No effective treatment is currently available. This study seeks to shed light on the SMARCB1-mediated pathogenesis of RT and to discover potential therapeutic targets. Global gene expression of 10 RT was compared with 12 cellular mesoblastic nephromas, 16 clear cell sarcomas of the kidney, and 15 Wilms tumors. 114 top genes were differentially expressed in RT (p<0.001, fold change >2 or <0.5). Among these were down-regulation of SMARCB1 and genes previously associated with SMARCB1 (ATP1B1, PTN, DOCK4, NQO1, PLOD1, PTP4A2, PTPRK). 28/114 top differentially expressed genes were involved with neural or neural crest development and were all sharply down-regulated. This was confirmed by Gene Set Enrichment Analysis (GSEA). Neural and neural crest stem cell marker proteins SOX10, ID3, CD133 and Musashi were negative by immunohistochemistry, whereas Nestin was positive. Decreased expression of CDKN1A, CDKN1B, CDKN1C, CDKN2A, and CCND1 was identified, while MYC-C was upregulated. GSEA of independent gene sets associated with bivalent histone modification and polycomb group targets in embryonic stem cells demonstrated significant negative enrichment in RT. Several differentially expressed genes were associated with tumor suppression, invasion and metastasis, including SPP1 (osteopontin), COL18A1 (endostatin), PTPRK, and DOCK4. We conclude that RTs arise within early progenitor cells during a critical developmental window in which loss of SMARCB1 directly results in repression of neural development, loss of cyclin dependent kinase inhibition, and trithorax/polycomb dysregulation.
Rhabdoid tumor: gene expression clues to pathogenesis and potential therapeutic targets.
No sample metadata fields
View SamplesAbstract
Text mining of full-text journal articles combined with gene expression analysis reveals a relationship between sphingosine-1-phosphate and invasiveness of a glioblastoma cell line.
No sample metadata fields
View SamplesGoal: To compare the gene expression profiles from pediatric patients with each other, with those reported in adults and in those related to exosomes.
Differential gene expression of soluble CD8+ T-cell mediated suppression of HIV replication in three older children.
Sex, Specimen part
View SamplesThe gene expression patterns of favorable histology Wilms tumors (FHWT) that relapsed were compared with those that did not relapse using oligonucleotide arrays
Predicting relapse in favorable histology Wilms tumor using gene expression analysis: a report from the Renal Tumor Committee of the Children's Oncology Group.
No sample metadata fields
View SamplesThe goal of this study is to define biologically distinct subsets of Very Low Risk Wilms Tumors (VLRWT) using oligonucleotide arrays.
Subsets of very low risk Wilms tumor show distinctive gene expression, histologic, and clinical features.
No sample metadata fields
View SamplesSHH signaling pathway is activated in many type of cancers. However, the role of its activation in particular type of cancer was poorly understood. The GLI family transcription factor GLI1 is the effector of Shh pathway activation and functions as oncogene. Our goal of research is to identify the GLI1 targets in desmoplastic medulloblastomas.
Defining a role for Sonic hedgehog pathway activation in desmoplastic medulloblastoma by identifying GLI1 target genes.
No sample metadata fields
View SamplesThe chromosomal translocation t(12;21) resulting in the ETV6-RUNX1 fusion gene is the most common genetic abnormality in childhood acute lymphoblastic leukemia (ALL). As the emergence of microarray technology, finding subtype-specific genes becomes one of the main objectives in most ALL studies. However, the list of differentiated genes derived by comparing patients in the subtype versus the others contains many false positives, which are not really subtype-specific. In order to refine the list of subtype-specific genes for ALL with ETV6-RUNX1, this study conducted microarray experiments on patients in both diagnosis and remission status.
No associated publication
Specimen part, Disease, Disease stage
View SamplesIn acute myeloid leukemia (AML), the mixed lineage leukemia (MLL) gene may be rearranged to generate a partial tandem duplication (PTD), or fused to partner genes through a chromosomal translocation (tMLL). In this study, we first explored the differentially expressed genes between MLL-PTD and tMLL using gene expression profiling of our cohort (15 MLL-PTD and 10 tMLL) and one published data set. The top 250 probes were chosen from each set, resulting in 29 common probes (21 unique genes) to both sets. The selected genes include four HOXB genes, HOXB2, B3, B5, and B6. The expression values of these HOXB genes significantly differ between MLL-PTD and tMLL cases. Clustering and classification analyses were thoroughly conducted to support our gene selection results. Second, as MLL-PTD, FLT3-ITD, and NPM1 mutations are identified in AML with normal karyotypes, we briefly studied their impact on the HOXB genes. Another contribution of this study is to demonstrate that using public data from other studies enriches samples for analysis and yields more conclusive results.
Expression of HOXB genes is significantly different in acute myeloid leukemia with a partial tandem duplication of MLL vs. a MLL translocation: a cross-laboratory study.
No sample metadata fields
View SamplesAffymetrix GeneChip Exon-1.0ST was used to study the differential gene profiles in RV (right ventricle) samples from neonates with HLHS (hypoplastic left heart syndrome) versus RV and LV (left ventricle) samples obtained from age-matched controls. Although few significant changes were observed in the genetic profiles between control LV and control RV, many genes passed the false discovery rate in comparing HLHS-RV to RV and LV control groups, with greater differential profiles noted between HLHS-RV and control RV.
No associated publication
Specimen part, Disease
View SamplesDrug resistance remains a major obstacle to successful cancer treatment. Here we use a novel approach to identify rapamycin as a glucocorticoid resistance reversal agent. A database of drug-associated gene expression profiles was screened for molecules whose profile overlapped with a gene expression signature of glucocorticoid (GC) sensitivity/resistance in Acute Lymphoblastic Leukemia (ALL) cells. The screen indicated the mTOR inhibitor rapamycin profile matched the signature of GC-sensitivity. We thus tested the hypothesis that rapamycin would induce GC sensitivity in lymphoid malignancy cells, and found that it sensitized cells to glucocorticoid induced apoptosis via modulation of antiapoptotic MCL1. These data indicate that MCL1 is an important regulator of GC-induced apoptosis, and that the combination of rapamycin and glucocorticoids has potential utility in ALL. Furthermore this approach represents a novel strategy for identification of promising combination therapies for cancer.
Gene expression-based chemical genomics identifies rapamycin as a modulator of MCL1 and glucocorticoid resistance.
No sample metadata fields
View Samples