refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 15509 results
Sort by

Filters

Technology

Platform

accession-icon GSE47869
Comparison of gene expression profiles between human DFAT cells and ADSCs derived from the same donors
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Dedifferentiated fat (DFAT) cells, established in vitro from mature adipocytes, exhibit certain properties of multipotent mesenchymal stem/stromal cells (MSCs), such as the ability to differentiate into multiple mesenchymal lineages. Although DFAT cells exhibit properties of proliferative progeny, at present there is only limited knowledge about their MSC-specific characteristics because those cells are considered to be potential artifacts of cell culture. To elucidate the identity of DFAT cells, we compared gene expression profiles of human DFAT cells and adipose-derived stem/stromal cells (ADSCs) established using adipose tissue from the same donors. Microarray analysis showed that global mRNA expression profiles of human DFAT cells were very similar to those of ADSCs, a representative MSC, despite being committed adipocyte progenitors.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE6367
Gene profile of breast cancers with immunohistochemical phenotypes of ER+/- and/or HER2+/-
  • organism-icon Homo sapiens
  • sample-icon 40 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95 Version 2 Array (hgu95av2)

Description

Hormones and growth factors accelerate cell proliferation of breast cancer cells, and these molecules are well investigated targets for drug development and application. The mechanisms of cell proliferation of breast cancers lacking estrogen receptor (ER) and HER2 have not been fully understood. The purpose of the present study is to find genes that are differentially expressed in breast cancers and that might significantly contribute to cell proliferation in these cancers. Forty tumor samples, consisting of ten each of immunohistochemically ER(+)/HER2(-), ER(+)/HER2(+), ER(-)/HER2(+), and ER(-)/HER2(-) cancer were analyzed using oligonucleotide microarrays. Both genes and tumor samples were subjected to hierarchical clustering. ER(+)/HER2(-) breast cancers and ER(-)/HER2(-) cancers tended to form a tumor cluster, but HER2 positive breast cancers were split into different tumor clusters.

Publication Title

Overexpression of E2F-5 correlates with a pathological basal phenotype and a worse clinical outcome.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP178159
Clinical study of human mesenchymal stem cells on the treatment of severe liver disease
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

we aimed to explore the potential therapeutic effects of human mesenchymal stem cell on severe liver disease

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part, Cell line

View Samples
accession-icon SRP131607
Compare RNA expression of Old Fibroblast to RNA expression of Young Fbroblast
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Analyze of RNA expression of Old Fibroblast and Young Fibroblast. Compare RNA expression of Old Fibroblast to RNA expression of Young Fbroblast

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP131659
Compare RNA expression of UVA fibroblast to sham fibroblast
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

we analysis of sham fibroblast and UVA fibroblast RNA expression using RNA sequencing and compare RNA expression.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP188485
miR-25 knock out mice kidney RNA sequencing
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

We generate miR-25 KO mice by Cas-9 technology, and run 5 month kidney RNA sequencing.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part, Cell line

View Samples
accession-icon SRP129355
Gene expression change affected by Sirt1 depletion and ionizing radiation in adult neural stem cells
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Adult neural stem cells derived from wild type and Sirt1 conditional knockout mice were treated with or without X-ray, the total RNA extracted from these cells were used for RNA sequencing.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Age, Specimen part, Cell line

View Samples
accession-icon SRP189703
circRNA sequence of HeLa S3 nucleus
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 3000

Description

No description.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE3790
Human cerebellum, frontal cortex [BA4, BA9] and caudate nucleus HD tissue experiment
  • organism-icon Homo sapiens
  • sample-icon 404 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Post mortem human brain tissue comparison between HD patients and controls from 3 brain regions - cerebellum, frontal cortex [BA4, BA9] and caudate nucleus. Gene expression analysed using linear models from LIMMA package in Bioconductor suite.

Publication Title

Regional and cellular gene expression changes in human Huntington's disease brain.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE10358
Discovery and validation of expression data for the Genomics of Acute Myeloid Leukemia Program at Washington University
  • organism-icon Homo sapiens
  • sample-icon 299 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Activating mutations in tyrosine kinase (TK) genes (e.g. FLT3 and KIT) are found in more than 30% of patients with de novo acute myeloid leukemia (AML); many groups have speculated that mutations in other TK genes may be present in the remaining 70%. We performed high-throughput re-sequencing of the kinase domains of 26 TK genes (11 receptor TK and 15 cytoplasmic TK) that are expressed in most AML patients, using genomic DNA from the bone marrow (tumor) and matched skin biopsy samples (germline) from 94 patients with de novo AML; sequence variants were validated in an additional 94 AML tumor samples (14.3 million base pairs of sequence were obtained and analyzed). We identified known somatic mutations in FLT3, KIT, and JAK2 TK genes at the expected frequencies, and found four novel somatic mutations, JAK1V623A, JAK1T478S, DDR1A803V and NTRK1S677N, once each in four respective patients out of 188 tested. We also identified novel germline sequence changes encoding amino acid substitutions (i.e. non-synonymous changes) in 14 TK genes, including TYK2, which had the largest number of non-synonymous sequence variants (11 total detected). Additional studies will be required to define the roles that these somatic and germline TK gene variants play in AML pathogenesis.

Publication Title

Somatic mutations and germline sequence variants in the expressed tyrosine kinase genes of patients with de novo acute myeloid leukemia.

Sample Metadata Fields

Sex, Age, Specimen part, Race

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact