Diethylstilbestrol (DES) inhibits the differentiation of female reproductive tracts during fetal and neonatal days . We examined global gene expressions in the oviduct, uterus and vagina in newborn mice with or without DES. These results suggest understanding the mechanism of the differentiation of female reproductive tracts.
Gene expression change in the Müllerian duct of the mouse fetus exposed to diethylstilbestrol in utero.
No sample metadata fields
View SamplesExpression profiling of mESCs after Fip1 depletion, 4 days post-transfection with siRNAs
No associated publication
Specimen part, Cell line
View SamplesEstrogen induce organ-specific cell proliferation and development in female reproductive organs, though the reproductive differentiation, sex maturation, implantation and lactation. However, the mechanism of organ-specific estrogen responsive genes is unknown. Thus, we examined early estrogen responsive genes in mouse uterus, vagina and mammary gland.
Comparison of estrogen responsive genes in the mouse uterus, vagina and mammary gland.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Integrative genomic analysis of the human immune response to influenza vaccination.
Sex, Specimen part, Treatment, Subject, Time
View SamplesThe purpose of the study was to assess the patterns of global gene expression in peripheral blood cells before and at three time points after the administration of a trivalent influenza vaccine in human male subjects, and to relate these to the antibody response to the vaccine. The antibody titer data for these subjects is provided as a supplemental file.
Integrative genomic analysis of the human immune response to influenza vaccination.
Sex, Specimen part, Treatment, Subject, Time
View SamplesThe purpose of the study was to assess the patterns of global gene expression in peripheral blood cells before and at three time points after the administration of a trivalent influenza vaccine in human female subjects, and to relate these to the antibody response to the vaccine
Integrative genomic analysis of the human immune response to influenza vaccination.
Sex, Specimen part, Treatment, Subject, Time
View SamplesThe molecular mechanisms whereby hepatitis B virus (HBV) induces hepatocellular carcinoma (HCC) remain elusive. We used genomic and molecular techniques to investigate host-virus interactions by mapping the entire liver of patients with HCC. We compared the gene signature of whole liver tissue (WLT) versus laser capture-microdissected (LCM) hepatocytes with intrahepatic expression of HBV. Gene expression profiling was performed on up to 17 WLT specimens obtained at various distances from the tumor center in individual livers of 11 patients with HCC and on selected LCM samples. HBV biomarkers were determined by real-time PCR and confocal immunofluorescence. Analysis of 5 areas of the liver showed a sharp change in gene expression between the immediate perilesional area and tumor periphery that correlated with a significant decrease in the intrahepatic expression of HBsAg. The tumor was characterized by a large preponderance of down-regulated genes, mostly involved in the metabolism of lipid and fatty acid, glucose, amino acids and drugs, with down-regulation of pathways involved in the activation of PXR/RXR and PPARa/RXRa nuclear receptors, comprising PGC1 and FOXO1, two key regulators of the hepatic metabolic functions and HBV transcription. These findings were confirmed by gene expression of microdissected hepatocytes. However, LCM of malignant hepatocytes also revealed up-regulation of unique genes associated with cancer and signaling pathways, including two novel HCC-associated cancer testis antigen (CTA) genes, NUF2 and TTK. HCC-associated with HBV is characterized by a metabolism switch-off and by a significant reduction in HBsAg. LCM proved to be a critical tool to validate gene signatures associated with HCC and to identify genes that may play a role in hepatocarcinogenesis opening new perspectives for the discovery of novel diagnostic markers and therapeutic targets.
Viral expression and molecular profiling in liver tissue versus microdissected hepatocytes in hepatitis B virus-associated hepatocellular carcinoma.
Specimen part, Disease, Subject
View SamplesMetastasis suppressor genes (MSGs) have contributed to an understanding of regulatory pathways unique to the lethal metastatic process. When re-expressed in experimental models, MSGs block cancer spread to, and colonization of distant sites without affecting primary tumor formation. On a single MSG basis, genes have been identified with expression patterns inverse to a MSG, and found to encode functional, druggable signaling pathways. We now hypothesize that common signaling pathways mediate the effects of many MSGs. By gene expression profiling of human MCF7 breast carcinoma cells expressing a scrambled siRNA or siRNAs to each of 19 validated MSGs (NME1, BRMS1, CD82, CDH1, CDH2, CDH11, CASP8, MAP2K4, MAP2K6, MAP2K7, MAPK14, GSN, ARHGDIB, AKAP12, DRG1, CD44, PEBP1, RRM1, KISS1), we identified genes whose expression was significantly opposite to at least five MSGs.
No associated publication
Specimen part, Cell line, Treatment, Time
View SamplesMicroarray gene expression of peripheral blood of the prostate cancer patients receiving localized external beam radiation therapy (EBRT)
No associated publication
Disease, Disease stage, Treatment, Subject, Time
View SamplesAutism spectrum disorder (ASD) is an early onset neurodevelopmental disorder, which is characterized by disturbances of brain function and behavioral deficits in core areas of impaired reciprocal socialization, impairment in communication skills, and repetitive or restrictive interests and behaviors. ASD is known to have a significant genetic risk, but the underlying genetic variation can be attributed to hundreds of genes. The molecular and pathophysiologic basis of ASD remains elusive because of its genetic heterogeneity and complexity, its high comorbidity with other diseases, and the paucity of brain tissue for study. The invasive nature of collecting primary neuronal tissue from patients might be circumvented through reprogramming peripheral cells to induced pluripotent stem cells (iPSCs), which are able to generate live neurons carrying the genetic variants of disease. This breakthrough allows us to access the cellular and molecular phenotypes of patients with intrinsic autism, that is patients without known genetic disorders or identifiable syndromes or malformations. To do this, we studied a relatively homogeneous patient population of boys with intrinsic autism by excluding patients with known genetic disease or recognizable phenotypes or syndromes, as well as those with profound mental retardation or primary seizure disorders. We generated iPSCs from patients with intrinsic autism, their unaffected male siblings and age-, and sex-matched unaffected controls. And these stem cells were subsequently differentiated into electrophysiologically active neurons. The expression profile for autistic and their unaffected siblings' iPSC-derived neurons were compared. A distinct expression profile was found between autism and sib control. The significantly differentially expressed genes (> 2-fold, FDR < 0.05) in autistic iPSC-derived neurons were significantly enriched for processes related to synaptic transmission, such as neuroactive ligand-receptor signaling and extracellular matrix interactions (FDR < 0.05), and were significantly enriched for genes previously associated with ASD (p < 0.05). Our findings suggest approaches such as iPSC-derived neurons will be an important method to obtain tissue for study that appropriately recapitulates the complex dynamics of an autistic neural cell.
Idiopathic Autism: Cellular and Molecular Phenotypes in Pluripotent Stem Cell-Derived Neurons.
Specimen part, Cell line, Subject
View Samples