We address the molecular mechanisms through which MYC promotes loss of cell identity and acquisition of stem cell-like traits, favouring the onset of tumorigenesis, by performing gene expression profile analyses in a transition from WT IMEC, IMEC over-expressing MYC and mammospeheres formed from IMEC-MYC (named M2). We then investigated the global gene expression profile of the fraction of cells hyper-activating the WNT pathway in M2 spheres, compared to the ones with low activation
MYC-driven epigenetic reprogramming favors the onset of tumorigenesis by inducing a stem cell-like state.
Sex, Specimen part
View SamplesOocyte maturation is accompanied by a transition from mRNA stability to instability. We investigated the role of DCP1A and DCP2, proteins responsible for mRNA decapping, in mRNA destabilization during mouse oocyte maturation.
Maternally recruited DCP1A and DCP2 contribute to messenger RNA degradation during oocyte maturation and genome activation in mouse.
No sample metadata fields
View SamplesDouble-stranded RNA (dsRNA) can enter different pathways in mammalian cells, including sequence-specific RNA interference, sequence-independent interferon response and editing by adenosine deaminases. To assess the potential of expressed dsRNA to induce interferon stimulated genes in somatic cells, we performed microarray analysis of HEK293 and HeLa cells transfected with a MosIR plasmid expressing an mRNA with a long inverted repeat structure in its 3UTR (MosIR) or with a parental MosIR plasmid (without inverted repeat) as a control.
dsRNA expression in the mouse elicits RNAi in oocytes and low adenosine deamination in somatic cells.
Specimen part
View SamplesWe analyzed a role of histone deacetylases in alternative splicing regulation. Using human exon arrays we identified a list of 683 genes whose splicing changes after HDAC inhibition with sodium butyrate.
Histone deacetylase activity modulates alternative splicing.
Cell line
View SamplesWe analyzed a role of Brd2 protein in transcription and alternative splicing. 289 genes change alternative splicing after Brd2 knockdown and 1459 genes alter gene expression compared to cells treated with negative control siRNA.
The C-terminal domain of Brd2 is important for chromatin interaction and regulation of transcription and alternative splicing.
Cell line
View SamplesGene expression throughout the reproductive process in rice (Oryza sativa) beginning with primordia development through pollination/fertilization to zygote formation was analyzed. We analyzed 25 stages/organs of rice reproductive development including early microsporogenesis stages with 57,381 probe sets, and identified around 26,000 expressed probe sets in each stage. Fine dissection of 25 reproductive stages/organs combined with detailed microarray profiling revealed dramatic, coordinated and finely tuned changes in gene expression. Decrease of expressed genes in the pollen maturation process was observed in a similar way with Arabidopsis and maize. An almost equal number of ab initio predicted genes and cloned genes appeared or disappeared coordinated with developmental stage progression. A large number of organ-/stage-specific genes were identified; notably 2,593 probe sets for developing anther, including 932 probe sets corresponding to ab initio predicted genes. Analysis of cell cycle-related genes revealed that several CDKs, cyclins and components of SCF E3 ubiquitin ligase complexes were expressed specifically in reproductive organs. Cell wall biosynthesis or degradation protein genes and transcription factor genes expressed specifically in reproductive stages were also newly identified. Rice genes homologous to reproduction-related genes in other plants showed expression profiles both consistent and inconsistent with their predicted functions. The rice reproductive expression atlas is likely to be the deepest and most comprehensive dataset available, indispensable for unraveling functions of many specific genes in plant reproductive processes that have not yet been thoroughly analyzed.
Rice expression atlas in reproductive development.
No sample metadata fields
View SamplesGene expression throughout the reproductive process in rice (Oryza sativa) beginning with primordia development through pollination/fertilization to zygote formation was analyzed. We analyzed 25 stages/organs of rice reproductive development including early microsporogenesis stages with 57,381 probe sets, and identified around 26,000 expressed probe sets in each stage. Fine dissection of 25 reproductive stages/organs combined with detailed microarray profiling revealed dramatic, coordinated and finely tuned changes in gene expression. Decrease of expressed genes in the pollen maturation process was observed in a similar way with Arabidopsis and maize. An almost equal number of ab initio predicted genes and cloned genes appeared or disappeared coordinated with developmental stage progression. A large number of organ-/stage-specific genes were identified; notably 2,593 probe sets for developing anther, including 932 probe sets corresponding to ab initio predicted genes. Analysis of cell cycle-related genes revealed that several CDKs, cyclins and components of SCF E3 ubiquitin ligase complexes were expressed specifically in reproductive organs. Cell wall biosynthesis or degradation protein genes and transcription factor genes expressed specifically in reproductive stages were also newly identified. Rice genes homologous to reproduction-related genes in other plants showed expression profiles both consistent and inconsistent with their predicted functions. The rice reproductive expression atlas is likely to be the deepest and most comprehensive dataset available, indispensable for unraveling functions of many specific genes in plant reproductive processes that have not yet been thoroughly analyzed.
Rice expression atlas in reproductive development.
No sample metadata fields
View SamplesGene expression throughout the reproductive process in rice (Oryza sativa) beginning with primordia development through pollination/fertilization to zygote formation was analyzed. We analyzed 25 stages/organs of rice reproductive development including early microsporogenesis stages with 57,381 probe sets, and identified around 26,000 expressed probe sets in each stage. Fine dissection of 25 reproductive stages/organs combined with detailed microarray profiling revealed dramatic, coordinated and finely tuned changes in gene expression. Decrease of expressed genes in the pollen maturation process was observed in a similar way with Arabidopsis and maize. An almost equal number of ab initio predicted genes and cloned genes appeared or disappeared coordinated with developmental stage progression. A large number of organ-/stage-specific genes were identified; notably 2,593 probe sets for developing anther, including 932 probe sets corresponding to ab initio predicted genes. Analysis of cell cycle-related genes revealed that several CDKs, cyclins and components of SCF E3 ubiquitin ligase complexes were expressed specifically in reproductive organs. Cell wall biosynthesis or degradation protein genes and transcription factor genes expressed specifically in reproductive stages were also newly identified. Rice genes homologous to reproduction-related genes in other plants showed expression profiles both consistent and inconsistent with their predicted functions. The rice reproductive expression atlas is likely to be the deepest and most comprehensive dataset available, indispensable for unraveling functions of many specific genes in plant reproductive processes that have not yet been thoroughly analyzed.
Rice expression atlas in reproductive development.
No sample metadata fields
View SamplesGene expression throughout the reproductive process in rice (Oryza sativa) beginning with primordia development through pollination/fertilization to zygote formation was analyzed. We analyzed 25 stages/organs of rice reproductive development including early microsporogenesis stages with 57,381 probe sets, and identified around 26,000 expressed probe sets in each stage. Fine dissection of 25 reproductive stages/organs combined with detailed microarray profiling revealed dramatic, coordinated and finely tuned changes in gene expression. Decrease of expressed genes in the pollen maturation process was observed in a similar way with Arabidopsis and maize. An almost equal number of ab initio predicted genes and cloned genes appeared or disappeared coordinated with developmental stage progression. A large number of organ-/stage-specific genes were identified; notably 2,593 probe sets for developing anther, including 932 probe sets corresponding to ab initio predicted genes. Analysis of cell cycle-related genes revealed that several CDKs, cyclins and components of SCF E3 ubiquitin ligase complexes were expressed specifically in reproductive organs. Cell wall biosynthesis or degradation protein genes and transcription factor genes expressed specifically in reproductive stages were also newly identified. Rice genes homologous to reproduction-related genes in other plants showed expression profiles both consistent and inconsistent with their predicted functions. The rice reproductive expression atlas is likely to be the deepest and most comprehensive dataset available, indispensable for unraveling functions of many specific genes in plant reproductive processes that have not yet been thoroughly analyzed.
Rice expression atlas in reproductive development.
No sample metadata fields
View SamplesMouse Hammer toe (Hm) shows syndactyly. To reveal the molecular mechanisms of Hm phenotype, we performed microarray analysis to search differencially expressed genes in Hm limb.
Enhancer adoption caused by genomic insertion elicits interdigital <i>Shh</i> expression and syndactyly in mouse.
Specimen part
View Samples