Background: African Americans (AA) have more pronounced insulin resistance and higher insulin secretion than European Americans (Caucasians or CA) when matched for age, gender, and body mass index (BMI). We hypothesize that physiological differences (including insulin sensitivity [SI]) between CAs and AAs can be explained by co-regulated gene networks in tissues involved in glucose homeostasis. Methods: We performed integrative gene network analyses of transcriptomic data in subcutaneous adipose tissue of 99 CA and 37 AA subjects metabolically characterized as non-diabetic, with a range of SI and BMI values. Results: Transcripts negatively correlated with SI in only the CA or AA subjects were enriched for inflammatory response genes and integrin-signaling genes, respectively. A sub-network (module) with TYROBP as a hub enriched for genes involved in inflammatory response (corrected p= 1.7E-26) was negatively correlated with SI (r= -0.426, p= 4.95E-04) in CA subjects. SI was positively correlated with transcript modules enriched for mitochondrial metabolism in both groups. Several SI-associated co-expressed modules were enriched for genes differentially expressed between groups. Two modules involved in immune response to viral infections and function of adherens junction, are significantly correlated with SI only in CAs. Five modules involved in drug/intracellular transport and oxidoreductase activity, among other activities, are correlated with SI only in AAs. Furthermore, we identified driver genes of these race-specific SI-associated modules. Conclusions: SI-associated transcriptional networks that were deranged predominantly in one ethnic group may explain the distinctive physiological features of glucose homeostasis among AA subjects.
Integrative network analysis reveals different pathophysiological mechanisms of insulin resistance among Caucasians and African Americans.
Sex, Specimen part, Race
View SamplesDespite the enormous amounts of molecular, cellular, and clinical data that are increasingly available for many different types of cancer, it remains a challenge to integrate different dimensions of data to construct mechanistic models that can robustly distinguish key driver genes from passenger genes, predict tumor progression, and tailor therapies optimally for individual patients. We present an integrative biology approach to constructing and analyzing multiscale regulatory networks of breast cancer. We systematically uncover not only known and novel gene subnetworks (modules) linked to breast cancer, but also their key drivers, the majority of which are not transcription factors or signaling molecules. A number of independent lines of evidence support that the predicted key drivers play central roles in breast cancer biology. We predict and experimentally validate ARF1 as a key driver of breast tumor phenotypes, and then demonstrate the ARF1-controlled subnetwork is a novel regulator of intra- and inter- cellular vesicle dynamics involved in epithelial-mesenchymal transition (EMT).
No associated publication
Cell line
View SamplesRNA isolated from sciatic nerve of postnatal day 21 mice with conditional ablation of YY1 in the SChwann cells
Yy1 as molecular link between neuregulin and transcriptional modulation of peripheral myelination.
Sex, Age, Specimen part
View SamplesPouchitis is a common complication for ulcerative colitis (UC) patients with ileal pouch-anal anastomosis (IPAA) surgery. Similarly to IBD, both innate host factors such as genetics, and environmental stimuli including the tissue-associated microbiome have been implicated in the pathogenesis. In this study, we make use of the IPAA model of inflammatory bowel disease (IBD) to carry out a study associating mucosal host gene expression with the microbiome and corresponding clinical outcomes.
Associations between host gene expression, the mucosal microbiome, and clinical outcome in the pelvic pouch of patients with inflammatory bowel disease.
Sex, Disease, Subject
View SamplesGenome-wide association studies (GWAS) have been pivotal to increasing our understanding of intestinal disease. However, the mode by which genetic variation results in phenotypic change remains largely unknown, with many associated polymorphisms likely to modulate gene expression. Analyses of expression quantitative trait loci (eQTL) to date indicate that as many as 50% of these are tissue specific. Here we report a comprehensive eQTL scan of intestinal tissue.
Expression quantitative trait loci analysis identifies associations between genotype and gene expression in human intestine.
Sex, Disease
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Cancer Cells Hijack PRC2 to Modify Multiple Cytokine Pathways.
Specimen part, Cell line, Treatment
View SamplesAlthough corticosteroids remain a mainstay of therapy for UC, a meta-regression of cohort studies in acute severe ulcerative colitis (UC) showed that 29% of patients fail corticosteroid therapy and require escalation of medical management or colectomy.
Gene expression changes associated with resistance to intravenous corticosteroid therapy in children with severe ulcerative colitis.
Specimen part
View SamplesWe studied the effect of knowking down SUZ12 +/- knowckdown of BRM on the responsivness of IFNg stimulated genes. Cells were transfected with siSZU12+/-siBRM or control siRNA+/-siBRM. Cells were then left untreated or exposed to IFNg for 6 hours.
Cancer Cells Hijack PRC2 to Modify Multiple Cytokine Pathways.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Properties of STAT1 and IRF1 enhancers and the influence of SNPs.
Specimen part, Cell line
View SamplesWe studied the effect of reconstitution of BRG1 in BRG1-deficient cells on the responsivness of IFNg stimulated genes. Cells were infected with control adenovirus or BRG1-encoding virus. Cells were then left untreated or exposed to IFNg for 6 hours.
Cancer Cells Hijack PRC2 to Modify Multiple Cytokine Pathways.
Cell line
View Samples