The adult pancreas is capable of limited regeneration after injury, but has no defined stem cell population. The cell types and molecular signals that govern the production of new pancreatic tissue are not well understood. Here we show that inactivation of the SCF-type E3 ubiquitin ligase substrate recognition component Fbw7 induces pancreatic ductal cells to reprogram into -cells. The induced -cells resemble islet -cells in morphology and histology, express genes essential for -cell function, and release insulin upon glucose challenge. Thus, loss of Fbw7 appears to reawaken an endocrine developmental differentiation program in adult pancreatic ductal cells. Our study highlights the plasticity of seemingly differentiated adult cells, identifies Fbw7 as a master regulator of cell fate decisions in the pancreas, and reveals adult pancreatic duct cells as a latent multipotent cell type.
Loss of Fbw7 reprograms adult pancreatic ductal cells into α, δ, and β cells.
Specimen part, Treatment
View SamplesThe goal of the study was to evaluate the influence of mutations in MLK4 on the protein function and the process of tumorigenesis in colorectal cancers. Biochemical data imply that a majority of MLK4 mutations in colon cancer are loss-of-function, including, E314K and Y330H mutations.
Recurrent MLK4 Loss-of-Function Mutations Suppress JNK Signaling to Promote Colon Tumorigenesis.
Specimen part, Cell line
View SamplesRecent studies have suggested increased plasticity of differentiated cells within the intestine to act both as intestinal stem cells and tumour initiating cells. However, little is known of the processes that regulate this plasticity. Our previous work has shown that activating mutations of Kras or the NF-kB pathway can drive dedifferentiation of intestinal cells lacking Apc.
TGFβ pathway limits dedifferentiation following WNT and MAPK pathway activation to suppress intestinal tumourigenesis.
Specimen part
View SamplesRecent studies have suggested increased plasticity of differentiated cells within the intestine to act both as intestinal stem cells and tumour initiating cells. However, little is known of the processes that regulate this plasticity. Our previous work has shown that activating mutations of Kras or the NF-kB pathway can drive dedifferentiation of intestinal cells lacking Apc.
TGFβ pathway limits dedifferentiation following WNT and MAPK pathway activation to suppress intestinal tumourigenesis.
No sample metadata fields
View SamplesIn order to identify transcriptional targets of ATF2, we used a recombinant adenovirus to express constitutively active ATF2 in murine hepatoblasts. Expression of GFP was the control condition.
JNK suppresses tumor formation via a gene-expression program mediated by ATF2.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
No associated publication
Sex, Age, Specimen part, Disease stage
View SamplesPancreatic ductal adenocarcinoma (PDA) carries a dismal prognosis and current treatments are only modestly effective. We present evidence that this variation is caused in part by recurrent, pervasive molecular differences between tumors. mRNA expression profiles measured using microdissected PDA clinical samples reveal three dominant subtypes of disease; epithelial, mesenchymal and acinar-like. The classical and quasi-mesenchymal subtypes are observed in human and mouse PDA cell lines. Importantly, responses to cytotoxics and KRAS depletion in human PDA cell lines differ substantially between subtypes, and in opposing directions. Integrated genomics implicate and functional studies support overexpression of the trancription factor GATA6 as a driver of the epithelial subtype. These results provide a molecular framework for evaluating the prospects of personalized treatment in PDA.
Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy.
Specimen part, Cell line
View SamplesPancreatic neuroendocrine tumor (PanNET) is relatively infrequent but is nevertheless metastatic. Seeking to extend a new paradigm of personalized medicine, we performed an integrative analysis of transcriptomic (mRNA and microRNA) and mutational profiles and defined three clinically relevant human PanNET subtypes. Importantly, cross-species analysis revealed two of these three subtypes in a well-characterized, genetically engineered mouse model (RIP1-Tag2) of PanNET and its cell lines. Each subtype share similarities to distinct cell types in pancreatic neuroendocrine development, features are reflected in their metabolic profiles. Subtype-specific molecular signatures metabolites are proposed to identify these subtypes.
No associated publication
Specimen part
View SamplesPancreatic neuroendocrine tumor (PanNET) is relatively infrequent but is nevertheless metastatic. Seeking to extend a new paradigm of personalized medicine, we performed an integrative analysis of transcriptomic (mRNA and microRNA) and mutational profiles and defined three clinically relevant human PanNET subtypes. Importantly, cross-species analysis revealed two of these three subtypes in a well-characterized, genetically engineered mouse model (RIP1-Tag2) of PanNET and its cell lines. Each subtype share similarities to distinct cell types in pancreatic neuroendocrine development, features are reflected in their metabolic profiles. Subtype-specific molecular signatures metabolites are proposed to identify these subtypes.
No associated publication
Specimen part
View SamplesIn patients with advanced colorectal cancer, leucovorin, fluorouracil, and irinotecan (FOLFIRI) is considered as one of the reference first-line treatments. However, only about half of treated patients respond to this regimen, and there is no clinically useful marker that predicts response. A major clinical challenge is to identify the subset of patients who could benefit from this chemotherapy. We aimed to identify a gene expression profile in primary colon cancer tissue that could predict chemotherapy response. Patients and Methods:- Tumor colon samples from 21 patients with advanced colorectal cancer were analyzed for gene expression profiling using Human Genome GeneChip arrays U133. At the end of the first-line treatment, the best observed response, according to WHO criteria, was used to define the responders and nonresponders. Discriminatory genes were first selected by the significance analysis of microarrays algorithm and the area under the receiver operating characteristic curve. A predictor classifier was then constructed using support vector machines. Finally, leave-one-out cross validation was used to estimate the performance and the accuracy of the output class prediction rule. Results:- We determined a set of 14 predictor genes of response to FOLFIRI. Nine of nine responders (100% specificity) and 11 of 12 nonresponders (92% sensitivity) were classified correctly, for an overall accuracy of 95%. Conclusion:- After validation in an independent cohort of patients, our gene signature could be used as a decision tool to assist oncologists in selecting colorectal cancer patients who could benefit from FOLFIRI chemotherapy, both in the adjuvant and the first-line metastatic setting.
Gene expression signature in advanced colorectal cancer patients select drugs and response for the use of leucovorin, fluorouracil, and irinotecan.
Specimen part
View Samples