Pre-LVAD and explanted ischemic and nonischemic cardiomyopathy and nonfailing hearts all normalized with RMA
Gene expression analysis of ischemic and nonischemic cardiomyopathy: shared and distinct genes in the development of heart failure.
No sample metadata fields
View SamplesMost individuals with cystic fibrosis (CF) carry one or two mutations that result in a maturation defect of the full-length CFTR protein. The deltaF508 mutation results in a mutant protein that is degraded by the proteasome instead of progressing to the apical membrane where it functions as a cyclic AMP-regulated chloride channel. 4 phenylbutyrate modulates heat shock protein expression and promotes trafficking of deltaF508 thus permitting maturation and membrane insertion. The goal of this study was to gain insight into the genetic mechanism of PBA action through a large-scale analysis of gene expression. The Affymetrix genome spanning U133 microarray set was used to compare mRNA expression in untreated IB3-1 cell line cultures with cultures treated with 1mM 4-phenylbuyterate for 12 and 24 hr. IB3-1 deltaF508/W1282X) bronchial epithelial cells were cultured in T75 flasks with gentamicin-free LHC-8 medium. Cells were fed with 10 ml of media every 2 to 3 days. After reaching 80% confluence cells were treated with 1 mM PBA. A T75 flask of confluent IB3-1 cells was rinsed twice with ice cold Hanks buffer then scraped into 3ml of ice cold TRIzol (Gibco BRL) then rinsed with 3 ml ice cold TRIzol and the mRNA was isolated according to the TRIzol protocol. A total of 5 control cultures, 3 cultures with 12 hr BPA application and 3 cultures with 24 hr PBA application were processed
Gene expression profile analysis of 4-phenylbutyrate treatment of IB3-1 bronchial epithelial cell line demonstrates a major influence on heat-shock proteins.
No sample metadata fields
View SamplesMouse embryonic stem cells can differentiate in vitro into spontaneously contracting cardiomyocytes. The main objective of this study was to investigate cardiogenesis in cultures of differentiating embryonic stem cells (ESCs) and to determine how closely it mimics in vivo cardiac development. We identified and isolated a population of cardiac progenitor cells (CPCs) through the use of a reporter DNA construct that allowed the expression of a selectable marker under the control of the Nkx2.5 enhancer. We proceeded to characterize these CPCs by examining their capacity to differentiate into cardiomyocytes and to proliferate. We then performed a large-scale temporal microarray expression analysis in order to identify genes that are uniquely upregulated or downregulated in the CPC population. We determined that the transcriptional profile of the mESC derived CPCs was consistent with pathways known to be active during embryonic cardiac development. We conclude that in vitro differentiation of mESCs recapitulates the early steps of mouse cardiac development.
Mouse ES cell-derived cardiac precursor cells are multipotent and facilitate identification of novel cardiac genes.
No sample metadata fields
View SamplesCFTR plasmid constructs were transfected in CF Bronchial IB3 cell cultures using Lipofectamine 2000. Global gene mRNA expression profiles at 48 hr after transfection were created with the Affymetrix U133 chip set.
No associated publication
Specimen part, Cell line
View SamplesAnalysis of 2 cultured normal lung cell lines, Normal Human Bronchial Epithelial (NHBE) and Human Small Airway Epithelial (SAEC) cells (Lonza, Walkersville, MD), following treatment with 5-aza-dC to induce DNA demethylation. These results provide insight into the role of epigenetic alterations, specifically demethylation, in differential gene expression in various lung neoplasms.
Integrative discovery of epigenetically derepressed cancer testis antigens in NSCLC.
Specimen part, Cell line
View SamplesIntravesical BCG Immunotherapy is the standard of care in treating non-muscle invasive bladder cancer, yet its mechanism of action remains elusive. Both innate and adaptive immune responses have been implicated in BCG activity. While prior research has indirectly demonstrated the importance of T cells and shown a rise in CD4+ T cells in bladder tissue after BCG, T cell subpopulations have not been fully characterized. We investigated the relationship between effector and regulatory T cells in an immune competent, clinically relevant rodent model of bladder cancer. Our data demonstrate that cancer progression in the MNU rat model of bladder cancer is characterized by a decline in the CD8/FoxP3 ratio, consistent with decreased adaptive immunity. By contrast, treatment with intravesical BCG leads to a large, transient rise in the CD4+ T cell population in the urothelium, and is both more effective and immunogenic compared to intravesical chemotherapy. Interestingly, whole transcriptome expression profiling of post-treatment intravesical CD4+ and CD8+ T cells revealed minimal differences in gene expression after BCG treatment. Together, our results suggest that while BCG induces T cell recruitment to the bladder, the T cell phenotype does not markedly change, implying that combining T cell activating agents with BCG might improve clinical activity.
Intravesical BCG Induces CD4<sup>+</sup> T-Cell Expansion in an Immune Competent Model of Bladder Cancer.
Specimen part, Treatment
View SamplesDent disease has multiple defects attributed to proximal tubule malfunction including low molecular weight proteinuria, aminoaciduria, phosphaturia and glycosuria. In order to understand the changes in kidney function of the Clc5 transporter gene knockout mouse model of Dent disease, we examined gene expression profiles from proximal tubules of mouse kidneys.
Transcriptional adaptation to Clcn5 knockout in proximal tubules of mouse kidney.
No sample metadata fields
View SamplesConstitutive MET signaling promotes invasiveness in primary and recurrent GBM; however, current MET-targeting strategies lack of effective biomarkers for selecting suitable patients for treatment. Here, we identified a predictive signature potentially valuable for indicating vulnerability to MET-targeted therapy in GBM. The use of both human and mouse gene expression microarrays showed that MET inhibitors regulate tumor (human) and host (mouse) cells within the tumor via distinct molecular processes, but overall they impede tumor growth by inhibiting cell cycle progression. Notably, GBM tumors with EGFRamp that showed resistance to erlotinib treatment also showed activation of the MET pathway, suggesting that a combination of EGFR and MET inhibitors may overcome or prevent such resistance in patients with EGFRamp GBM.
No associated publication
Specimen part, Disease, Disease stage, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Large-scale hypomethylated blocks associated with Epstein-Barr virus-induced B-cell immortalization.
Specimen part, Time
View SamplesHuman mucosal surfaces contain a wide range of microorganisms. The biological effects of these organisms are largely unknown. Large-scale metagenomic sequencing is emerging as a method to identify novel microbes. Unexpectedly, we identified DNA sequences homologous to virus ATCV-1, an algal virus not previously known to infect humans, in oropharyngeal samples obtained from healthy adults. The presence of ATCV-1 was associated with a modest but measurable decrease in cognitive functioning. A relationship between ATCV-1 and cognitive functioning was confirmed in a mouse model, which also indicated that exposure to ATCV-1 resulted in changes in gene expression within the brain. Our study indicates that viruses in the environment not thought to infect humans can have biological effects.
Chlorovirus ATCV-1 is part of the human oropharyngeal virome and is associated with changes in cognitive functions in humans and mice.
Treatment
View Samples