This SuperSeries is composed of the SubSeries listed below.
Using transcriptomics to guide lead optimization in drug discovery projects: Lessons learned from the QSTAR project.
Cell line, Treatment
View SamplesIn this paper we demonstrated the potential to flag toxicity issues by utilizing data from exploratory experiments which are typically generated for target evaluation purposes during early drug discovery
No associated publication
Cell line, Treatment
View SamplesIn this paper we demonstrated the potential to flag toxicity issues by utilizing data from exploratory experiments which are typically generated for target evaluation purposes during early drug discovery
No associated publication
Cell line, Treatment
View SamplesMaternal Embryonic Leucine Zipper Kinase (MELK), a Ser/Thr protein kinase, is highly over expressed in stem and cancer cells. The oncogenic role of MELK is attributed to its capacity to disable critical cell cycle checkpoints and to enhance replication. Most functional studies have relied on the use of siRNA/shRNA-mediated gene silencing, but this is often compromised by off target effects. Here we present the cellular validation of a novel, potent and selective small molecule MELK inhibitor, MELK-T1, which has enabled us to explore the biological function of MELK. Strikingly, the binding of MELK-T1 to endogenous MELK triggers a rapid and proteasome dependent degradation of the MELK protein. Treatment of MCF-7 breast adenocarcinoma cells with MELK-T1 leads to an accumulation of stalled replication forks and double strand breaks, followed by a replicative senescence phenotype. This phenotype correlates with a rapid and long-lasting ATM activation and phosphorylation of CHK2. Furthermore, MELK-T1 induces strong phosphorylation of p53 and prolonged up-regulation of p21.
MELK-T1, a small-molecule inhibitor of protein kinase MELK, decreases DNA-damage tolerance in proliferating cancer cells.
Cell line, Treatment
View SamplesIn this paper we demonstrated the potential to flag toxicity issues by utilizing data from exploratory experiments which are typically generated for target evaluation purposes during early drug discovery
Using transcriptomics to guide lead optimization in drug discovery projects: Lessons learned from the QSTAR project.
Cell line, Treatment
View SamplesIn this paper we demonstrated the potential to flag toxicity issues by utilizing data from exploratory experiments which are typically generated for target evaluation purposes during early drug discovery
Using transcriptomics to guide lead optimization in drug discovery projects: Lessons learned from the QSTAR project.
Cell line, Treatment
View SamplesIn this paper we demonstrated the potential to flag toxicity issues by utilizing data from exploratory experiments which are typically generated for target evaluation purposes during early drug discovery
Using transcriptomics to guide lead optimization in drug discovery projects: Lessons learned from the QSTAR project.
Cell line, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genetically Engineered iPSC-Derived FTDP-17 MAPT Neurons Display Mutation-Specific Neurodegenerative and Neurodevelopmental Phenotypes.
Specimen part, Treatment
View SamplesThe development of an effective therapy against tauopathies like Alzheimers disease (AD) and frontotemporal dementia (FTD) remains challenging, partly due to limited access to fresh brain tissue, the lack of translational in vitro disease models and the fact that underlying molecular pathways remain to be deciphered. Several genes play an important role in the pathogenesis of AD and FTD, one of them being the MAPT gene encoding the microtubule-associated protein tau. Over the past few years, it has been shown that induced pluripotent stem cells (iPSC) can be used to model various human disorders and can serve as translational in vitro tools. Therefore, we generated iPSC harboring the pathogenic FTDP-17 (frontotemporal dementia and parkinsonism linked to chromosome 17) associated mutations IVS10+16 with and without P301S in MAPT using Zinc Finger Nuclease technology. Whole transcriptome analysis of MAPT IVS10+16 neurons reveals neuronal subtype differences, reduced neural progenitor proliferation potential and aberrant WNT signaling. Notably, all phenotypes were recapitulated using patient-derived neurons. Finally, an additional P301S mutation causes an increased calcium bursting frequency, reduced lysosomal acidity and tau oligomerization.
Genetically Engineered iPSC-Derived FTDP-17 MAPT Neurons Display Mutation-Specific Neurodegenerative and Neurodevelopmental Phenotypes.
Treatment
View SamplesDefective HBV-specific CD8+ T cells are believed to contribute to a chronic stage of the disease.
No associated publication
Sex, Age, Specimen part
View Samples