Defining the aging-cancer relationship is a challenging task. Mice deficient in Zmpste24, a metalloproteinase mutated in human progeria and involved in nuclear prelamin A maturation, recapitulate many features of aging. However, their short lifespan and cell-intrinsic and -extrinsic alterations restrict the application and interpretation of carcinogenesis protocols. To circumvent these limitations we have generated Zmpste24 mosaic mice. Interestingly, these mice develop normally - revealing cell-extrinsic mechanisms are preeminent in progeria- and display decreased incidence of infiltrating oral carcinomas. Moreover, ZMPSTE24 knock-down reduces human cancer cell invasiveness. Our results disclose the ZMPSTE24-prelamin A system as an example of antagonistic pleiotropy on cancer and aging, support the potential of cell-based and systemic therapies for progeria, and highlight ZMPSTE24 as a new anticancer target.
Prelamin A causes progeria through cell-extrinsic mechanisms and prevents cancer invasion.
Cell line
View SamplesStroke is a brain attack cutting off vital blood, and consequently the nutrients and oxygen vital to the brain cells that control everything we do. Stroke is a complex disease with unclear pathogenesis resulting from environmental and genetic factors.
TTC7B emerges as a novel risk factor for ischemic stroke through the convergence of several genome-wide approaches.
Sex
View SamplesBehets disease (BD) is a multisystemic immuno-inflammatory disorder characterized by a generalized vasculitis, particularly at the orogenital mucosa and eye. It is a complex disease with unclear pathogenesis.
No associated publication
Sex
View SamplesWe used the Dmrt2a inducible transgenic line Tg(hsp70:HA-dmrt2a) to do a brief dmrt2a overexpression at bud-stage in order to identify Dmrt2a immediate targets and understand its mechanism of action. Both wildtype and transgenic embryos received the same treatment.
No associated publication
Specimen part
View SamplesBoth, sleep deprivation and ketamine treatments are efficient and fast-acting antidepressants acting within the first 12-24 hr. post-treatment. This experiment was designed to identify if common transcriptional responses are elicited by both treatments
No associated publication
Specimen part
View SamplesInorganic arsenic, a major environmental contaminant, has risen as an important health problem worldwide. More detailed identification of the molecular mechanisms associated with iAs exposure would help to establish better strategies for prevention and treatment. Although chronic iAs exposures have been previously studied there is little to no information regarding the early events of exposure to iAs. To better characterize the early mechanisms of iAs exposure we conducted gene expression studies using sublethal doses of iAs at two different time-points. The major transcripts differentially regulated at 2 hrs of iAs exposure included antioxidants, detoxificants and chaperones. Moreover, after 12 hrs of exposure many of the down-regulated genes were associated with DNA replication and S phase cell cycle progression. Interestingly, the most affected biological pathway by both 2 or 12 hrs of iAs exposure were the Nrf2-Keap1 pathway, represented by the highly up-regulated HMOX1 transcript, which is transcriptionally regulated by the transcription factor Nrf2. Additional Nrf2 targets included SQSTM1 and ABCB6, which were not previously associated with acute iAs exposure.
No associated publication
Cell line
View SamplesTIMP-4 overexpression increases tumor burden in mice, promotes progenitor cell phenotype and sensitizes cells to apoptosis, by relying on NFkB signaling
Tissue inhibitor of metalloproteinases-4 (TIMP-4) regulates stemness in cervical cancer cells.
Specimen part, Cell line
View SamplesThe biological effects of TTR proteins in the vasculature remain unknown.
Transthyretin proteins regulate angiogenesis by conferring different molecular identities to endothelial cells.
Specimen part
View SamplesDELLA proteins interact with ARR1 and modulate its activity.
No associated publication
Specimen part
View SamplesPlant cells contain different O-acetylserine(thiol)lyase (OASTL) enzymes involved in Cys biosynthesis and located in different subcellular compartments. These enzymes are made up of a complex variety of isoforms resulting in different subcellular Cys pools. To unravel the contribution of cytosolic Cys to plant metabolism, we characterized the knockout oas-a1.1 and osa-a1.2 mutants, deficient in the most abundant cytosolic OASTL isoform in Arabidposis thaliana. Total intracellular Cys and glutathione concentrations were reduced, and the glutathione redox state was shifted in favour of its oxidized form. Interestingly, the capability of the mutants to chelate heavy metals did not differ from that of the wild type, but the mutants have an enhanced sensitivity to Cd. With the aim of establishing the metabolic network most influenced by the cytosolic Cys pool, we used the ATH1 GeneChip for evaluation of differentially expressed genes in the oas-a1.1 mutant grown under non-stress conditions. The transcriptomic footprints of mutant plants had predicted functions associated with various physiological responses that are dependent on reactive oxygen species and suggested that the mutant was oxidatively stressed. To further elucidate the specific function(s) of the OAS-A1 isoform in the adaptation response to cadmium we extended the trasncriptome experiment to the wild type and oas-a1.1 mutant plants exposed to Cd. The comparison of transcriptomic profiles showed a higher proportion of genes with altered expression in the mutant than in the wild type, highlighting up-regulated genes identified as of the general oxidative stress response rather than metal-responsive genes.
Knocking out cytosolic cysteine synthesis compromises the antioxidant capacity of the cytosol to maintain discrete concentrations of hydrogen peroxide in Arabidopsis.
Specimen part
View Samples