This SuperSeries is composed of the SubSeries listed below.
Distinct metabolic states govern skeletal muscle stem cell fates during prenatal and postnatal myogenesis.
Age, Specimen part
View SamplesTranscriptomic analysis of FACS-sorted Pax7nGFP quiescent skeletal muscle satellite cells cells from young, and old mice. Results provide knowledge about the molecular mechanisms underlying age-related skeletal muscle satellite cells homeostasis.
Distinct metabolic states govern skeletal muscle stem cell fates during prenatal and postnatal myogenesis.
Specimen part
View SamplesTranscriptomic analysis of FACS-sorted Pax7nGFP quiescent skeletal muscle satellite cells cells from old, and post-mortem mice. Results provide knowledge about the molecular mechanisms underlying age-related skeletal muscle satellite cells homeostasis.
Distinct metabolic states govern skeletal muscle stem cell fates during prenatal and postnatal myogenesis.
Age, Specimen part
View SamplesSenescent cells affect many physiological and pathophysiological processes. While select genetic and epigenetic elements for senescence induction have been identified, the dynamics, epigenetic mechanisms and regulatory networks defining senescence competence, induction and maintenance remain poorly understood, precluding the deliberate therapeutic targeting of senescence for health benefits. Here, we examined the possibility that the epigenetic state of enhancers determines senescent cell fate. We explored this by generating time-resolved transcriptomes and epigenome profiles during oncogenic RAS-induced senescence and validating central findings in different cell biology and disease models of senescence. Through integrative analysis and functional validation, we reveal links between enhancer chromatin, transcription factor recruitment and senescence competence. We demonstrate that activator protein 1 (AP-1) ‘pioneers’ the senescence enhancer landscape and defines the organizational principles of the transcription factor network that drives the transcriptional programme of senescent cells. Together, our findings enabled us to manipulate the senescence phenotype with potential therapeutic implications.
AP-1 imprints a reversible transcriptional programme of senescent cells.
Specimen part, Cell line, Treatment, Time
View SamplesClinical symptoms of dengue virus (DENV) infection, the most prevalent arthropod-borne viral disease, range from classical mild dengue fever to severe, life-threatening dengue shock syndrome. However, most DENV infections cause few or no symptoms. Asymptomatic DENV-infected patients provide a unique opportunity to decipher the host immune responses leading to virus elimination without negative impact on an individuals health. We used an integrated approach of transcriptional profiling and immunological analysis to compare a Cambodian population of strictly asymptomatic viremic individuals with clinical dengue patients. Whereas inflammatory pathways and innate immune response pathways were similar between asymptomatic individuals and clinical dengue patients, expression of proteins related to antigen presentation and subsequent T and B cell activation pathways were differentially regulated, independent of viral load and previous DENV infection history. Feedback mechanisms controlled the immune response in asymptomatic viremic individuals, as demonstrated by increased activation of T cell apoptosis-related pathways and FcRIIB signaling associated with decreased anti-DENV specific antibody concentrations. Taken together, our data illustrate that symptom-free DENV infection in children is associated with determined by increased activation of the adaptive immune compartment and proper control mechanisms, leading to elimination of viral infection without excessive immune activation, with implications for novel vaccine development strategies
Increased adaptive immune responses and proper feedback regulation protect against clinical dengue.
Sex, Age, Specimen part, Disease, Disease stage
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Sumoylation coordinates the repression of inflammatory and anti-viral gene-expression programs during innate sensing.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
No associated publication
Specimen part
View SamplesSenescent cells affect many physiological and pathophysiological processes. While select genetic and epigenetic elements for senescence induction have been identified, the dynamics, epigenetic mechanisms and regulatory networks defining senescence competence, induction and maintenance remain poorly understood, precluding the deliberate therapeutic targeting of senescence for health benefits. Here, we examined the possibility that the epigenetic state of enhancers determines senescent cell fate. We explored this by generating time-resolved transcriptomes and epigenome profiles during oncogenic RAS-induced senescence and validating central findings in different cell biology and disease models of senescence. Through integrative analysis and functional validation, we reveal links between enhancer chromatin, transcription factor recruitment and senescence competence. We demonstrate that activator protein 1 (AP-1) 'pioneers' the senescence enhancer landscape and defines the organizational principles of the transcription factor network that drives the transcriptional programme of senescent cells. Together, our findings enabled us to manipulate the senescence phenotype with potential therapeutic implications.
AP-1 imprints a reversible transcriptional programme of senescent cells.
Cell line, Treatment, Time
View SamplesHepatoblastoma, the most common pediatric liver cancer, is tightly linked to excessive Wnt/�-catenin signaling. Microarray analysis identified two tumor subclasses resembling distinct phases of liver development, and a 16-gene signature discriminated invasive and metastatic hepatoblastomas, and predicted prognosis with high accuracy. <br></br>
Hepatic stem-like phenotype and interplay of Wnt/beta-catenin and Myc signaling in aggressive childhood liver cancer.
Sex, Age, Specimen part, Disease, Disease stage, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Necroptosis microenvironment directs lineage commitment in liver cancer.
Sex, Cell line
View Samples