How animals coordinate gene expression in response to starvation is an outstanding problem closely linked to aging, obesity, and cancer. Newly hatched Caenorhabditis elegans respond to food deprivation by halting development and promoting long-term survival (L1 diapause), thereby providing an excellent model to study starvation response. Through a genetic search, we have discovered that the tumor suppressor Rb critically promotes survival during L1 diapause and likely does so by regulating the expression of genes in both insulin-IGF-1 signaling (IIS)-dependent and -independent pathways mainly in neurons and the intestine. Global gene expression analyses suggested that Rb maintains the starvation-induced transcriptome and represses the re-feeding induced transcriptome, including the repression of many pathogen/toxin/oxidative stress-inducible and metabolic genes, as well as the activation of many other stress-resistant genes, mitochondrial respiratory chain genes, and potential IIS receptor antagonists. Notably, the majority of genes dysregulated in starved L1 Rb(-) animals were not found to be dysregulated in fed conditions. Together, these findings identify Rb as a critical regulator of the starvation response and suggest a link between functions of tumor suppressors and starvation survival. These results may provide mechanistic insights into why cancer cells are often hypersensitive to starvation treatment.
The tumor suppressor Rb critically regulates starvation-induced stress response in C. elegans.
No sample metadata fields
View SamplesOur understanding of cellular mechanisms by which animals regulate their response to starvation is limited despite the close relevance of the problem to major human health issues. L1 diapause of Caenorhabditis elegans, where newly hatched first stage larval arrested in response to food-less environment, is an excellent system to study the problem. We found through genetic manipulation and lipid analysis that ceramide biosynthesis, particularly those with longer fatty acid side chains, critically impacts animal survival during L1 diapause. Genetic and expression analyses indicate that ceramide likely regulate this response by affecting gene expression and activity in multiple regulatory pathways known to regulate starvation-induced stress, including the insulin-IGF-1 signaling (IIS) pathway, Rb and other pathways that mediate pathogen/toxin/oxidative stress responses. These findings provide an important insight into the roles of sphingolipid metabolism in not only starvation response but also aging and food-response related human health problems.
Starvation-Induced Stress Response Is Critically Impacted by Ceramide Levels in Caenorhabditis elegans.
No sample metadata fields
View SamplesFibrotic diseases have significant health impact and have been associated with differentiation of the resident fibroblasts into myofibroblasts. In particular, stiffened extracellular matrix and TGF-1 in fibrotic lesions have been shown to promote pathogenic myofibroblast activation and progression of fibrosis in various tissues. To better understand the roles of mechanical and chemical cues on myofibroblast differentiation and how they may crosstalk, we cultured primary valvular interstitial cells (VICs) isolated from porcine aortic valves and studied how traditional TCPS culture, which presents a non-physiologically stiff environment, and TGF-1 affect native VIC phenotypes.
Hydrogels preserve native phenotypes of valvular fibroblasts through an elasticity-regulated PI3K/AKT pathway.
Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Anti-inflammatory properties of alpha- and gamma-tocopherol.
Sex
View SamplesThe perception that soy food products and dietary supplements will have beneficial effects on heart health has led to a massive consumer market. However, we have previously noted that diet has a profound effect on disease progression in a genetic model of hypertrophic cardiomyopathy (HCM). In this model, a soy-based diet negatively impacts cardiac function in male mice.
Remodeling the cardiac transcriptional landscape with diet.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Specific microRNAs are preferentially expressed by skin stem cells to balance self-renewal and early lineage commitment.
Sex, Specimen part, Treatment
View SamplesWe established the transcriptional profile of brain aging and examine the global effects of vitamin E supplementation on age-related alterations in expression in the aged mouse brain.
Anti-inflammatory properties of alpha- and gamma-tocopherol.
Sex
View SamplesTo investigate the global effects of vitamin E supplementation on heart aging, we used high-density oligonucleotide arrays to measure transcriptional alterations in 30-month-old B6C3F1 mice supplemented with - and -tocopherol since middle age (15 months).
Anti-inflammatory properties of alpha- and gamma-tocopherol.
Sex
View SamplesThis study is to find the cellular and molecular mechanisms by which a naturally-occurring Np53 isoform causes accelerated aging in humans. The biological function of Np53, which lacks only 40 N-terminal amino acids, represents an example of p53 as a regulator of mammalian aging. When expressed together with WTp53 in mice, Np53 causes an aging phenotype such as shorter life span, reduced body mass, organ atrophy and osteoporosis. Because p53 must form a tetramer to regulate transcription, we generated p53 clones (based upon the structure of the native p53 tetramer) containing one Np53 linked with one WTp53 to form a functional Np53:WTp53 tetramer with 1:1 stoichiometry. Thus, our strategy ensured each p53 tetramer contained 2 Np53 and 2 WTp53 proteins. Importantly, Np53:WTp53 form stable tetramers, based upon gel filtration chromatography and structural analysis using electron microscopy. Furthermore, the Np53:WTp53 tetramer activates transcription equally well compared with WTp53 tetramers in an in vitro reconstituted transcription system. Having verified the stoichiometry, stability, structure, and activity of these Np53:WTp53 tetramers, here we used microarray analysis to compare global gene expression patterns in p53-null H1299 cells expressing either WTp53 or Np53:WTp53. As expected, global gene expression was largely similar, since the differences between Np53:WTp53 tetramers and WTp53 tetramers are slight: only 2 of 4 p53 proteins will be different in the Np53:WTp53 tetramer. Among only several dozen genes that were selectively up- or down-regulated 2-fold or greater, many genes known to regulate mammalian aging were altered in cells expressing Np53:WTp53, including insulin signaling pathway members (IRS1, INPP5D, PLK3, MAP3K1, FGF5) and regulators of glucose metabolism (SLC2A2, CRYAB, LRCH1). Expression of other key metabolic genes were also altered in cells expressing Np53:WTp53 tetramers, suggesting that global me tabolic changes might contribute to Np53:WTp53 pathology. In collaboration with Metabolon (Durham, NC), we identified approximately one hundred metabolites that were significantly up- or down-regulated in H1299 cells expressing Np53:WTp53. The metabolome analysis was a powerful complement to the gene expression data, and further suggested that the mTOR pathway (e.g. across-the-board up-regulation of amino acid levels) and mitochondrial function (e.g. up-regulation of carnitine, important for a-oxidation of fatty acids) was altered in cells expressing Np53:WTp53. These findings were subsequently validated using biochemical and cell-based approaches. Furthermore, whereas equal expression of Np53 and WTp53 cause accelerated aging in mammals, due to alternative splicing and translation initiation Np53 is a naturally-occurring isoform whose expression levels can change throughout the lifetime. Thus, the cellular and molecular mechanisms identified from this work will likely reflect changes common to normal, physiological aging.
The human ΔNp53 isoform triggers metabolic and gene expression changes that activate mTOR and alter mitochondrial function.
Specimen part, Cell line
View SamplesOxidative stress may play a role in normal aging. SKN-1 is a transcription factor necessary for intestine development in Caenorhabditis elegans, which also regulates the response to oxidative stress post-embryonically. Using DNA microarrays, we found that oxidative stress induces the antioxidant response, the heat shock response, and detoxification genes, while the expression of genes involved in homeostasis, development, and reproduction were decreased. Both up-regulated and down-regulated genes can be wholly, partially, or not at all dependent on SKN-1 action. However, induction of the heat shock response by oxidative stress was not affected by SKN-1 removal.
Oxidative stress and longevity in Caenorhabditis elegans as mediated by SKN-1.
Sex, Age
View Samples