refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 12590 results
Sort by

Filters

Technology

Platform

accession-icon E-MTAB-1908
Transcription profiling by array of Saccharomyces cerevisiae cells to estimate labeled and total mRNA levels every 5 minutes for three complete cell cycles
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Dynamic transcriptome profiling with metabolic labeling (4tU) (Sun et al. Genome Research 2012) was applied to synchronized S.cerevisiae cells to estimate labeled and total mRNA levels every 5 minutes for three complete cell cycles. The dataset comprises two time series from independent biological replicates for each mRNA fraction (total, labeled).

Publication Title

Periodic mRNA synthesis and degradation co-operate during cell cycle gene expression

Sample Metadata Fields

Sex, Treatment, Time

View Samples
accession-icon E-MTAB-2539
Rpb4 functions mainly in mRNA synthesis by RNA polymerase II
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

RNA polymerase II (Pol II) is the central enzyme that carries out eukaryotic mRNA transcription and consists of a 10-subunit catalytic core and a heterodimeric subcomplex of subunits Rpb4 and Rpb7 (Rpb4/7). Rpb4/7 has been proposed to shuttle from the nucleus to the cytoplasm, and to function there in mRNA translation and degradation. Here we provide evidence that Rpb4 mainly functions in nuclear mRNA synthesis by Pol II, and evidence arguing against an important cytoplasmic role. We used metabolic RNA labeling and comparative Dynamic Transcriptome Analysis (cDTA) to show that Rpb4 deletion in Saccharomyces cerevisiae causes a drastic defect in mRNA synthesis that is compensated by down-regulation of mRNA degradation, resulting in mRNA level buffering. Deletion of Rpb4 can be rescued by covalent fusion of Rpb4 to the Pol II core subunit Rpb2, which largely restores mRNA synthesis and degradation defects caused by Rpb4 deletion. Thus Rpb4 is a bona fide Pol II core subunit which functions mainly in mRNA synthesis.

Publication Title

Rpb4 functions mainly in mRNA synthesis by RNA polymerase II

Sample Metadata Fields

Sex

View Samples
accession-icon E-MTAB-1037
Transcription profiling by array of Saccharomyces cerevisiae (yeast) to study the Mediator signaling network and specific transcription factor - Mediator subunit interactions
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

By applying MC EMiNEM (a novel method based on the concept of Nested Effects Models (NEMs) for the retrieval of functional dependencies between proteins that have pleiotropic effects on mRNA transcription) to the expression data from four gene perturbation studies (three of them unpublished) in Saccharomyces cerevisiae, we hope to derive new insight into the Mediator signaling network and specific transcription factor - Mediator subunit interactions. The structure of the resulting regulatory networks allows us to hypothesize on possible structural changes of the Mediator upon binding of activators or repressors.

Publication Title

MC EMiNEM Maps the Interaction Landscape of the Mediator

Sample Metadata Fields

Sex

View Samples
accession-icon E-MTAB-1347
Transcription profiling by array of Escherichia coli overproducing either the response regulator (RR) YpdB or the RR YehS (control) to identify target genes of the YpdA/YpdB histidine kinase/response regulator system
  • organism-icon Escherichia coli
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix E. coli Genome 2.0 Array (ecoli2)

Description

To identify YpdB-regulated genes, the transcriptome profiles of E. coli cells overproducing either the response regulator (RR) YpdB or the RR YehS (control) were comparatively analyzed. The expression level of 15 genes varied more than 1.9-fold.

Publication Title

Identification of a target gene and activating stimulus for the YpdA/YpdB histidine kinase/response regulator system in Escherichia coli

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon E-MTAB-984
Transcription profiling by array of E. coli overproducing the response regulator YehT to investigate the YehU/YehT system
  • organism-icon Escherichia coli
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix E. coli Genome 2.0 Array (ecoli2)

Description

To identify YehT-regulated genes, the transcriptome profiles of E. coli cells overproducing either the response regulator (RR) YehT or the RR KdpE (control) were comparatively analyzed. The expression level of 32 genes varied more than 8-fold.

Publication Title

First insights into the unexplored two-component system YehU/YehT in Escherichia coli

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon E-MEXP-3150
Transcription profiling of yeast Mediator subunits Med11 and Med2 and Med20 mutant strains
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Saccharomyces cerevisiae strains carrying mutations of the essential Mediator subunit Med11 as well as strains lacking the non-essential Mediator subunits Med2 and Med20 were compared to the corresponding wild-type strains.

Publication Title

Mediator head subcomplex Med11/22 contains a common helix bundle building block with a specific function in transcription initiation complex stabilization

Sample Metadata Fields

Sex, Subject

View Samples
accession-icon GSE98278
A molecular fingerprint for terminal abdominal aortic aneurysm progression
  • organism-icon Homo sapiens
  • sample-icon 48 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Analysis of differential gene expression for rutured vs stable abdominal aortic aneurysms (AAA) and for intermediate size (55mm) vs large (>70mm) AAA.

Publication Title

Molecular Fingerprint for Terminal Abdominal Aortic Aneurysm Disease.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE80000
Adam17 Deficiency Promotes Atherosclerosis by Enhanced TNFR2 Signaling in Mice.
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Adam17 Deficiency Promotes Atherosclerosis by Enhanced TNFR2 Signaling in Mice.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE79999
Adam17-Deficiency Promotes Atherosclerosis by Enhanced TNFR2 Signaling (macrophage)
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Gene expression analysis in tissues of Adam17 hypomorphic and wildtype control C57BL/6 mice.

Publication Title

Adam17 Deficiency Promotes Atherosclerosis by Enhanced TNFR2 Signaling in Mice.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE79998
Adam17-Deficiency Promotes Atherosclerosis by Enhanced TNFR2 Signaling (aorta)
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Gene expression analysis in tissues of Adam17 hypomorphic and wildtype control C57BL/6 mice.

Publication Title

Adam17 Deficiency Promotes Atherosclerosis by Enhanced TNFR2 Signaling in Mice.

Sample Metadata Fields

Sex

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact