Disseminated triple negative breast cancer (TNBC) is an incurable disease with limited therapeutic options beyond chemotherapy. Therefore, identification of druggable vulnerabilities is a mind aim. Protein kinases play a central role in cancer and particularly in TNBC. They are involved in many oncogenic functions including migration, proliferation, genetic stability or maintenance of stem-cell like properties. In this article we describe a novel multi-kinase inhibitor with antitumor activity in this cancer subtype. EC-70124 is a hybrid indolocarbazole analog obtained by combinatorial biosynthesis of Rebeccamycin and Staurosporine genes that showed antiproliferative effect and in vivo antitumoral activity. Biochemical experiments demonstrated the inhibition of the PI3K/mTOR and JAK/STAT pathways. EC-70124 mediated DNA damage leading to cell cycle arrest at the G2/M phase. Gene set enrichment analyses identified several deregulated functions including cell proliferation, migration, DNA damage, regulation of stem cell differentiation and reversion of the epithelial-mesenchymal transition (EMT) phenotype, among others. Combination studies showed a synergistic interaction of EC-70124 with docetaxel, and an enhanced activity in vivo. Furthermore, EC-70124 had a good pharmacokinetic profile. In conclusion these experiments demonstrate the antitumor activity of EC-70124 in TNBC paving the way for the future clinical development of this drug alone or in combination with chemotherapy.
Antitumor activity of the novel multi-kinase inhibitor EC-70124 in triple negative breast cancer.
Cell line, Treatment
View SamplesModulation of gut microbiota through probiotic supplementation is an interesting strategy to prevent obesity
No associated publication
No sample metadata fields
View SamplesLactoferrin is a highly multifunctional protein. Indeed, it is involved in many physiological functions, including regulation of iron absorption and immune responses.
A nutritional supplement containing lactoferrin stimulates the immune system, extends lifespan, and reduces amyloid <i>β</i> peptide toxicity in <i>Caenorhabditis elegans</i>.
No sample metadata fields
View SamplesCocoa protein content is a very interesting source for isolation of antioxidant bio-peptides, which can be used for the prevention of age-related diseases. We use microarrays to study the global genome expression of C. elegans fed with a peptide (13L) isolated from cocoa.
A cocoa peptide protects Caenorhabditis elegans from oxidative stress and β-amyloid peptide toxicity.
No sample metadata fields
View Samples