Outbred D.melanogaster populations subjected to >300 generations of natural selection on either control, or 12% ethanol, or variable food (2 replicates each) and exposed, as first instar larvae, to either water control or 12% ethanol.
Evolution of gene expression and expression plasticity in long-term experimental populations of Drosophila melanogaster maintained under constant and variable ethanol stress.
No sample metadata fields
View SamplesThe sequence of gene regulatory events that drive neonatal germ cell development in the mammalian testis is not yet clear. We assessed changes in mRNA utilization in the neonatal testis at 1 and 4 dpp, times when the testis contains quiescent gonocytes (1 dpp) and proliferating spermatogonia (4 dpp). There are not thought to be major changes in the nature or number of somatic cells over that interval.
Translational activation of developmental messenger RNAs during neonatal mouse testis development.
Age, Specimen part
View SamplesEvaluate the change in transcription factors that have a role in human mesenchymal stem cell (hMSC) commitment to a cardiomyocyte lineage when co-cultured for 4 days with rat neonatal cardiomyocytes and before acquiring a recognizable cardiac phenotype.
Calcium dependent CAMTA1 in adult stem cell commitment to a myocardial lineage.
Specimen part, Disease
View SamplesCurcumin has been demonstrated to have many neuroprotective properties, including improvement of cognition in humans and neurogenesis in animals, yet the mechanism of such effects remains unclear. Here, we assessed behavioural performance and hippocampal cell proliferation in aged rats after 6- and 12-week curcumin-fortified diets. Curcumin enhanced non-spatial and spatial memory, as well as dentate gyrate cell proliferation as compared to control diet rats. We also investigated underlying mechanistic pathways that might link curcumin treatment to increased cognition and neurogenesis via microarray analysis of cortical and hippocampal mRNA transcription.
No associated publication
Sex, Specimen part, Treatment, Time
View SamplesTo identify the potential mechanisms of enhanced activity of combined inhibition of erlotinib and YF454A, we conducted a microarray analysis on gene expression profiles in PC9 erlotinib cells.
No associated publication
Specimen part, Disease, Treatment
View SamplesThe Hippocampus Consortium data set provides estimates of mRNA expression in the adult hippocampus of 99 genetically diverse strains of mice including 67 BXD recombinant inbred strains, 13 CXB recombinant inbred strains, a diverse set of common inbred strains, and two reciprocal F1 hybrids.
Genetics of the hippocampal transcriptome in mouse: a systematic survey and online neurogenomics resource.
Sex, Age, Specimen part
View SamplesType 2 diabetes (T2D) is the most common form of diabetes in humans and is closely associated with dyslipidemia and obesity that magnifies the mortality and morbidity related to T2D. The TALLYHO/JngJ (TH) mouse is a polygenic model for T2D characterized by obesity, hyperinsulinemia, impaired glucose uptake and tolerance, hyperlipidemia, and hyperglycemia. To determine the genetic factors that contribute to these T2D related characteristics in TH mice, we interbred TH mice with C57BL/6J (B6) mice. The parental, F1, and F2 mice were phenotyped at 8, 12, 16, 20, and 24 weeks of age for 4-hour fasting plasma triglyceride, cholesterol, insulin, and glucose levels, as well as body weights. Fat pad and carcass weights were measured at 24 weeks after sacrificing the mice. The F2 mice were genotyped genome-wide for 68 markers. Of 393 genotyped F2 mice, 16 were chosen from the extremes of the triglyceride distribution (8 high and 8 low), and liver, pancreas, muscle and adipose tissue were measured for gene expression. Gene expression quantitative trait locus (eQTL) analysis aided in selection of candidates underlying hyperlipidemia, diabetes and obesity QTLs. We identified several genetic loci that affected quantitative variation in plasma lipid and glucose levels and obesity traits.
Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice.
Specimen part
View SamplesThe immune system plays a pivotal role in susceptibility to and progression of a variety of diseases. Due to its strong genetic basis, heritable differences in immune function may contribute to differential disease susceptibility between individuals. Genetic reference populations, such as the BXD (C57BL/6J X DBA/2J) panel of recombinant inbred (RI) mouse strains, provide a unique model through which to integrate baseline phenotypes in healthy individuals with heritable risk for disease because of the ability to combine data collected from these populations across multiple studies and time. We performed basic immunophenotyping (e.g. percentage of circulating B and T lymphocytes and CD4+ and CD8+ T cell subpopulations) in peripheral blood of healthy mice from 41 BXD RI strains to define the phenotypic variation in this model system and to characterize the genetic architecture that unlerlies these traits. Significant QTL models that explained the majority (50-77%) of phenotypic variance were derived for each trait and for the T:B cell and CD4+:CD8+ ratios. Combining QTL mapping with spleen gene expression data uncovered two quantitative trait transcripts (QTTs), Ptprk and Acp1, that which are candidates for heritable differences in the relative abundance of helper and cytotoxic T cells. These data will be valuable in extracting genetic correlates of the immune system in the BXD panel. In addition, they will be a useful resource in prospective, phenotype-driven model selection to test hypotheses about differential disease or environmental susceptibility between individuals with baseline differences in the composition of the immune system.
Identifying genetic loci and spleen gene coexpression networks underlying immunophenotypes in BXD recombinant inbred mice.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Comprehensive analysis of microRNA (miRNA) targets in breast cancer cells.
Specimen part, Cell line
View SamplesDomestic chicken has been intensively studied because of its role as an efficient source of lean meat. However, commercial broilers resulting from genetic selection for rapid growth demonstrate detrimental traits, such as excess deposition of abdominal adipose tissue, metabolic disorders, and reduced reproduction. Therefore fast-growing broilers represent obese chickens compared to slow-growing egg layers (e.g, Leghorn) or wild strain of meat-type chickens (e.g., Fayoumi). Fayoumi chickens, originating from Egypt, represent a harder stain of chickens, which are more resistant to diseases. Leghorn chickens are the original breed of commercial U.S layers. Both lines were maintained highly inbred by Iowa State University poultry geneticists with an inbreeding coefficient higher than 0.95. Both Fayoumi and Leghorn demonstrated lean phenotype compared to broilers, and these three lines of chickens are genetically distant from each other.
Molecular and metabolic profiles suggest that increased lipid catabolism in adipose tissue contributes to leanness in domestic chickens.
Sex, Age, Specimen part
View Samples