The SWR1 complex replaces the canonical histone H2A with the variant H2A.Z (Htz1 in yeast) at specific chromatin regions. This dynamic alteration in nucleosome structure provides a molecular mechanism to regulate transcription. Here we analysed the transcription profiles of single and double mutants and wild-type cells by whole-genome microarray analysis. Our results indicate that genome-wide transcriptional misregulation in htz1 can be partially or totally suppressed if SWR1 is not formed (swr1), if it forms but cannot bind to chromatin (swc2), or if it binds to chromatin but has no histone replacement activity (swc5). These results suggest that in htz1 the nucleosome remodelling activity of SWR1 affects chromatin integrity because of an attempt to replace H2A with Htz1 in the absence of the latter.
The SWR1 histone replacement complex causes genetic instability and genome-wide transcription misregulation in the absence of H2A.Z.
No sample metadata fields
View SamplesWe report a new protein complex with a role in transcription elongation that is formed by Ypr045c (Thp3) and the Csn12 component of the COP9-signalosome. Thp3-Csn12 is recruited to transcribed genes. Their mutations suppress the gene expression defects of mutants of the THO complex involved in mRNP biogenesis and export and show defects in mRNA accumulation. In vivo transcription elongation impairment of thp3 mutants is shown by reduction of RNAPII recruitment throughout an active gene and in transcript run on analysis performed in G-less systems. This new complex establishes a novel link between transcription and mRNA processing.
New suppressors of THO mutations identify Thp3 (Ypr045c)-Csn12 as a protein complex involved in transcription elongation.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
A genome-wide function of THSC/TREX-2 at active genes prevents transcription-replication collisions.
No sample metadata fields
View SamplesTranscription is a major obstacle for replication fork progression and a cause of genome instability. Such instability increases in mutants with a suboptimal assembly of the nascent messenger ribonucleo-protein particle (mRNP), as THO/TREX and the NPC-associated THSC/TREX-2 complex.
A genome-wide function of THSC/TREX-2 at active genes prevents transcription-replication collisions.
No sample metadata fields
View SamplesGene expression in eukaryotes is an essential process that includes transcription, pre-RNA processing and RNA export. All these steps are coupled and normally, any failure in one step affects the other steps and could cause nuclear mRNA retention. One important player in this interface is the poly(A)-RNA binding protein Nab2, which regulates the poly(A)-tail length of mRNAs protecting their 3-ends from a second round of polyadenylation and facilitating their nucleo-cytoplasmic export. Interestingly, here we show that Nab2 has additional roles in mRNA transcription elongation, tRNA metabolism and rRNA export.
Nab2 functions in the metabolism of RNA driven by polymerases II and III.
No sample metadata fields
View SamplesTranscription is a major contributor to genome instability. A main cause of transcription-associated instability relies on the capacity of transcription to stall replication. Such genome instability is increased in RNAPII mutants.
RNA polymerase II contributes to preventing transcription-mediated replication fork stalls.
No sample metadata fields
View SamplesIn the yeast Saccharomyces cerevisiae, cleavage factor I (CFI) and cleavage and polyadenylation factor (CPF) build the core of the transcription termination machinery. CFI comprises the Rna14, Rna15, Pcf11, and Clp1 proteins, as well as the associated Hrp5 RNA-binding protein. We found that CFI participates in the DNA damage response and that rna14-1 shows synthetic growth defects with mutants of different repair pathways, including homologous recombination, non-homologous end joining, post replicative repair, mismatch repair, and nucleotide excision repair, implicating that impaired RNAPII termination and 3-end processing decreases the cellular tolerance for DNA damage. Beyond replication progression defects, we found that bypass of the G1/S checkpoint in rna14-1 cells leads to synthetic sickness, accumulation of phosphorylated H2A, as well as increase in Rad52-foci and in recombination. Our data provide evidence that CFI dysfunction impairs RNAPII turnover, leading to replication hindrance and lower tolerance to exogenous DNA damage. These findings underscore the importance of coordination between transcription termination, DNA repair and replication in the maintenance of genomic stability.
Cleavage factor I links transcription termination to DNA damage response and genome integrity maintenance in Saccharomyces cerevisiae.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The Npl3 hnRNP prevents R-loop-mediated transcription-replication conflicts and genome instability.
No sample metadata fields
View SamplesTHO/TREX is a conserved nuclear complex that functions in mRNP biogenesis at the interface of transcription-RNA export with a key role in preventing transcription-associated genome instability.
Genome-wide function of THO/TREX in active genes prevents R-loop-dependent replication obstacles.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Excess of Yra1 RNA-Binding Factor Causes Transcription-Dependent Genome Instability, Replication Impairment and Telomere Shortening.
No sample metadata fields
View Samples