This SuperSeries is composed of the SubSeries listed below.
Jarid1b targets genes regulating development and is involved in neural differentiation.
Specimen part
View SamplesThe H3K4me2/3 histone demethylase Jarid1b (Kdm5b/Plu1) is dispensable for embryonic stem cell (ESC) self-renewal, but essential for ESC differentiation along the neural lineage. During neural differentiation, Jarid1b depleted ESCs fail to efficiently silence lineage-inappropriate genes, specifically stem and germ cell genes. Our results delineate an essential role for Jarid1b-mediated transcriptional control during ESC differentiation.
Jarid1b targets genes regulating development and is involved in neural differentiation.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
No associated publication
No sample metadata fields
View SamplesEmbryonic development is tightly regulated by transcription factors and chromatin-associated proteins. H3K4me3 is associated with active transcription and H3K27me3 with gene repression, while the combination of both keeps genes required for development in a plastic state. Here we show that deletion of the H3K4me2/3 histone demethylase Jarid1b (Kdm5b/Plu1) results in major neonatal lethality due to respiratory failure. Jarid1b knockout embryos have several neural defects including disorganized cranial nerves, defects in eye development and increased incidences of exencephaly. Moreover, in line with an overlap of Jarid1b and Polycomb targets genes, Jarid1b knockout embryos display homeotic skeletal transformations typical for Polycomb mutants. Genome-wide analysis demonstrated that normally inactive genes encoding developmental regulators acquire aberrant H3K4me3 in early Jarid1b knockout embryos. H3K4me3 accumulates as embryonic development proceeds, leading to increased expression of neural master regulators in knockouts. Taken together, these results suggest that Jarid1b contributes to mouse development by protecting developmental genes from inappropriate acquisition of active histone modifications.
The histone demethylase Jarid1b ensures faithful mouse development by protecting developmental genes from aberrant H3K4me3.
No sample metadata fields
View SamplesThe Polycomb group (PcG) proteins form chromatin-modifying complexes that are essential for embryonic development and stem cell renewal and are commonly deregulated in cancer. Here, we identify their target genes using genome-wide location analysis in human embryonic fibroblasts. We find that Polycomb-Repressive Complex 1 (PRC1), PRC2, and tri-methylated histone H3K27 co-occupy >1000 silenced genes with a strong functional bias for embryonic development and cell fate decisions. We functionally identify 40 genes derepressed in human embryonic fibroblasts depleted of the PRC2 components (EZH2, EED, SUZ12) and the PRC1 component, BMI-1. Interestingly, several markers of osteogenesis, adipogenesis, and chrondrogenesis are among these genes, consistent with the mesenchymal origin of fibroblasts. Using a neuronal model of differentiation, we delineate two different mechanisms for regulating PcG target genes. For genes activated during differentiation, PcGs are displaced. However, for genes repressed during differentiation, we paradoxically find that they are already bound by the PcGs in nondifferentiated cells despite being actively transcribed. Our results are consistent with the hypothesis that PcGs are part of a preprogrammed memory system established during embryogenesis marking certain key genes for repressive signals during subsequent developmental and differentiation processes.
Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions.
No sample metadata fields
View SamplesOsteoblasts are key players in bone remodeling. The accessibility of human primary osteoblast-like cells (HOb) from bone explants render them a lucrative model for studying molecular physiology of bone turnover, discovery of novel anabolic therapeutics and mesenchymal cell biology in general. Relatively little is known about resting and dynamic expression profiles of HObs and no studies have been conducted to date to systematically assess the osteoblast transcriptome. The aim of this study was to characterize HObs and investigate signaling cascades and gene networks using genomewide expression profiling in resting and Bone Morphogenic Protein (BMP)-2 and Dexamethasone induced cells.
Systematic assessment of the human osteoblast transcriptome in resting and induced primary cells.
No sample metadata fields
View SamplesCD34+ fraction of cord blood (CB) cells can be reprogrammed on pronectinF-coated dish in serum free medium using Sendai virus (SeV) vector carrying reprogramming factors OCT3/4, SOX2, KLF4 and c-MYC. human ES cell-like colonies came to merge around 18 days after SeV infection on pronectin-coated dish in human ES cell medium supplemented with bFGF under normoxic culture (20% O2). After passages, dish like-shape colonies were seeded on pronectinF-coated 96 well-plate in a single cell and cultured in N2B27 based medium supplemented with LIF, FK, MAPKi, GSKi in hypoxic culture condition (5% O2) for cloning purpose. Emerged dome shape colonies were collected and cultured in human ES cell medium supplemented with bFGF under normoxic culture (20% O2) again. Dish shape and human ES cell-like colonies derived from single cell were picked up for further appraisal of reprogrammed cells such as expression of pluriotencyrelated molecules. Reprogrammed cells can be maintained for more than 20 passages without differentiation.
Generation of virus-free induced pluripotent stem cell clones on a synthetic matrix via a single cell subcloning in the naïve state.
Specimen part
View SamplesWe used microarrays to detail the global programme of gene expression underlying cellularisation and identified distinct classes of up-regulated genes in fbn5-1 T-DNA insertion Arabidopsis mutant.
No associated publication
No sample metadata fields
View SamplesTime Course in vitro Differentiation of Myogenic Primary Myoblast into Myotubes for Ontario Genome Project 2004-05.
No associated publication
Sex
View SamplesMyogenic Primary Myoblast Time Course in vitro Differentiation into Myotubes for Ontario Genome Project 2004-05.
No associated publication
Sex
View Samples